RAJEEV GANDHI GOVT. POST GRADUATE COLLEGE, AMBIKAPUR, SURGUJA (CG), INDIA

Learning Outcomes based Curriculum Framework

FOR

MASTER OF SCIENCE PROGRAMME

IN

PHYSICS

SEMESTER SYSTEM (CBCS) SESSION 2023-2024

DEPARTMENT OF PHYSICS

VISION

The vision of the Physics Department is to provide in proficiency both in depth understanding of principles and concept of Physics, theoretical and experimental Physics. The Department aims to enhance the students' knowledge in basic and applied physics. To inculcate aptitude for a research career in academia or industry by introducing advanced ideas and techniques that are applicable while emphasizing the underlying concepts of Physics.

MISSION

- To impart quality education in Physics such that they aim to become Scientists in reputed Research Organisations. To make the students effectively disseminate their knowledge in Physics to coming generations..
- Develop the capacity and know how to apply principles/laws of Physics to solve the problems. The ability to do and interpret the data obtained in experiments. To become a center of excellence and extend research facilities.
- Apply the Physics knowledge for sustainable development useful for society. Assume responsibility and always practice ethical principles. To function effectively as individual as well as in a team.

PROGRAMME OUTCOMES (POs)

PO1	Knowledge	Capable of demonstrating comprehensive disciplinary knowledge gained during course of study				
PO2	Research Aptitude	Capability to ask relevant/appropriate questions for identifying, formulating and analyzing the research problems and to draw conclusion from the analysis				
PO3	Communication	Ability to communicate effectively on general and scientific topics with the scientific community and with society at large				
PO4	Problem Solving	Capability of applying knowledge to solve scientific and other problems				
PO5	Individual and Team Work	Capable to learn and work effectively as an individual, and as a member or leader in diverse teams, in multidisciplinary settings.				
PO6	Investigation of Problems	Ability of critical thinking, analytical reasoning and research based knowledge including design of experiments, analysis and interpretation of data to provide conclusions				
PO7	Modern Tool usage	Ability to use and learn techniques, skills and modern tools for scientific practices				
PO8	Science and Society	Ability to apply reasoning to assess the different issues related to society and the consequent responsibilities				

		relevant to the professional scientific practices
PO9	Life-Long Learning	Aptitude to apply knowledge and skills that are necessary for participating in learning activities throughout life
PO10	Project Management	Ability to demonstrate knowledge and understanding of the scientific principles and apply these to manage projects

PROGRAMME SPECIFIC OUTCOMES (PSOs)

After successful completion of M. Sc. Physics program, the students will

PSO1	Acquire an in-depth understanding and knowledge of the core areas of Physics encompassing mathematical physics, classical mechanics, quantum mechanics, electrodynamics, and statistical mechanics for explicating physical phenomena covering wide length and time scales.
PSO2	Be capable of applying the core physical laws to unravel a multitude of physical properties, processes, and effects involving radiation, nuclei, atoms, molecules, and bulk forms of matter.
PSO3	Develop hands-on skills for carrying out elementary as well as advanced experiments in different sub-fields of Physics viz. condensed matter physics, nuclear physics, particle physics, materials science, computational physics & electronics, along with enhancing their understanding of physical concepts and theories.
PSO4	Attain abilities of critical thinking, problem mapping & solving using fundamental principles of Physics, systematic analysis & interpretation of results, and unambiguous oral & writing/presentation skills.
PSO5	Have robust foundation in basic and practical aspects of Physics enabling them to venture into research in front-line areas of physical sciences, and career as Physics teachers and scientists.

Graduate Attributes

- 1. In depth understanding of the fundamental concepts of physics.
- Ability to undertake problems in multidisciplinary domains of Science & Technology viz. Space Science, Medical Physics, Plasma Science, Quantum Technologies, Advanced Materials Science, Computational Techniques, etc.
- 3. Ability to apply the acquired knowledge of Physics to Engineering Problems.
- 4. Understanding of basic tools of computational physics and their application in various domains of physics and engineering.
- 5. Ability to perform the experiments and analyze the experimental data based on acquired knowledge in the domains of electronics, atomic and nuclear physics, condensed matter physics, optics and Lasers, and other advanced topics.
- 6. Skills to demonstrate basic principles of physics by use of simple experimental as well as high end experimental techniques.
- 7. Ability to develop advanced functional materials and carry out their characterization.
- 8. Ability to design, fabricate and characterize device structures such as sensors, solar cells, optical components, etc. for various applications.
- 9. Ability to make effective oral and written technical communication.
- 10. Appreciation and adherence to norms of professional ethics.

The Programme learning outcomes relating to M.Sc. Programme in Physics:

Upon the successful completion, graduates of the MSc program are expected to be able to:

- 1. Demonstrate high-level knowledge in advanced classical mechanics, quantum mechanics, electrodynamics and statistical mechanics and apply it to complex problems in physics and in other areas.
- 2. Use appropriate advanced mathematical and computational tools to solve problems in physics.
- 3. Demonstrate the ability to successfully complete a research or design a project. This includes demonstrating skills such as assembling and conducting experiments, explaining the physical basis of the operation of an apparatus and interpretation of results of measurement or using appropriate theoretical and computing tools to model and analyze data.
- 4. Work independently and within a team
- 5. Demonstrate writing and oral communication skills.
- 6. Demonstrate integrity, professionalism and honesty in their work.
- 7. Knowledge and deep understanding of principles of basic and applied physics
- 8. Subject knowledge to pursue higher studies in the advanced physics areas, such as, High Energy Physics, Astrophysics, Quantum Information Processing, Nanotechnology, Plasma Technology, Nonlinear Optics, Fibre Optics, etc.
- 9. Knowledge of fabrication and characterization of devices, such as, solar cells, gas sensor, energy storage, magnetic data storage, etc.
- 10. Skills in certain experimental techniques for characterization of materials for their structural, morphological, surface topology, electrical, magnetic, dielectric and optical properties.
- 11. Knowledge and skills to use various vacuum based techniques for development of thin film based materials, structures, and plasma devices and systems.
- 12. Technical knowledge and skills to understand and appreciate interdisciplinary research topics.
- 13. Skills in computational physics for wide range of applications ranging from the visualization of physical theories and process, design of functional materials, simulation and modelling of optical processes, etc.
- 14. Written and Oral technical communication skills.

DEPARTMENT OF PHYSICS, RAJEEV GANDHI GOVT. P.G. COLLEGE, AMBIKAPUR (CG), INDIA

PROGRAM OUTCOMES (PO) IN RELATION TO GRADUATE ATTRIBUTES PROGRAMME OUTCOMES

At the completion of the M.Sc. Physics program, the students of our Department will be able to:

PO 1	Distinctive Academic curriculum:	Mathematical Physics, Classical Mechanics, Advanced Electromagnetic Theory, Electronics, Atomic and Molecular Physics, Quantum Mechanics, Solid State Physics, Nuclear Physics, Numerical Methods and Computer Programming, and project-based learning have acquired knowledge and skill in problem solving.
PO 2	Qualified and Competent Faculty Members:	Become professionally trained.
PO 3	Transfer of Knowledge through Scholarly Activities:	Demonstrate highest standards of academic excellence.
PO 4	Interdisciplinary Project-based Learning:	Excel in the research related to Physics and Materials characterization.
PO 5	State-of-the-Art Laboratories:	Become professionally competent in the area of electronics, and microcontrollers.
PO 6	Exceptional Computational Facilities:	Develop a knowledge in C programming and critical computing skills.

PO 7	Internship Program:	Industry interaction, secure good references and recommendations.
PO 8	Mentorship:	Build a strong resume, help guide career goals, Abroad opportunities.
PO 9	Soft Skill:	Interpersonal and communication skills as well as a commitment to life-long learning.
PO 10	Electives, Extra	Acquire specific and in-depth knowledge to present and
D	isciplinary Paper:	publish research findings.

The M. Sc. programme is a two-year course divided into four-semesters. The syllabus and schemes of examination are detailed herewith.

The M.Sc. course shall consist of 20 theory courses. The M.Sc. Physics Programme would make the students competent in a natural science, viz., Physics, and help them understand its role in modern day technology. Overall, the course would enable the students to understand the fundamental concepts and experimental methods of physics which would help them to innovate/apply/generate new devices/applications/insights/knowledge. Knowledge gained through the open electives would be an asset in branching out in fields other than physics.

In I/II/III/IV semester there shall be five theory courses each of 70 marks and 30 marks for internal assessment test. In internal assessment, there will be 10 marks for written test, 10 marks for assignment and 10 marks for a seminar in each paper.

Thus there shall be T/I=100 marks for each paper, minimum passing / qualifying marks shall be 36% in each theory/internal assessment. Candidate will be required to pass separately in each theory and internal assessment.

ACADEMIC PROGRAMMES & SCHEMES M.Sc. (Physics)

FIRST SEMESTER (CBCS System)

	ype	/Subjects)		rnal tten est	Cont. Int. Valuation				
Paper	Course Type	Course (Paper/Subjects)	Max. Marks	Ql. Marks	W. test	Seminar	Assignment	Total	Grand Total
I.	CCC	Mathematical Physics	70	25	10	10	10	30	100
II.	CCC	Lab course A	-	-	-	-	-	-	100
III	CCC	Lab Course B	-	-	-	-	-	-	100
IV	CCC	Classical Mechanics	70	25	10	10	10	30	100
V	CCC	Quantum Mechanics- I	70	25	10	10	10	30	100
VI	PRJ/FST /EST	Social Outreach & Internship/Entrepren eurship	-	-	-	-	-	-	100
	ECC/CB	Constitutionalism &Indian Political System	70	25	10	10	10	30	100
VII	ECC/CB	Electronic Devices and	A A∲ pl	ic2t5or	s 10	10	10	30	100
	ECC/CB	CB Condensed Matter Physics - I		25	10	10	10	30	100
	ECC/CB	High Energy Physics-I	70	25	10	10	10	30	100
	TOTAL								700

SECOND SEMESTER (CBCS System)

Paper	Course Type	Course (Paper/Subjects)	External Written Test		Cont. Int. Valuation					
Pa	Cours	Cot (Paper/	Max. Marks	Ql. Marks	W. test	Seminar	Assignm ent	Total	Grand Total	
I.	CCC	Electronics	70	25	10	10	10	30	100	
II.	CCC	Lab Course A	-	-	-	-	-	-	100	
III	CCC	Lab Course B	-	-	-	-	-	-	100	
IV	ССС	Atomic and Molecular Physics	70	25	10	10	10	30	100	
V	CCC	Quantum Mechanics II	70	25	10	10	10	30	100	
VI	OSC	Research methodology & computer Application: basics	70	25	10	10	10	30	100	
	ECC/CB	Environmental and Forest Laws	70	25	10	10	10	30	100	
VII	ECC/CB	Electronic Instrumentation	70	25	10	10	10	30	100	
	ECC/CB	Condensed Matter - II	70	25	10	10	10	30	100	
	ECC/CB	High Energy Physics - II	70	25	10	10	10	30	100	
	TOTAL								700	

THIRD SEMESTER

Paper	Course Type	Course Type Course (Paper/Subjects)		ernal tten est	Cont. Int. Valuation				
Paj	Course	Cou (Paper/9	Max. Marks	Ql. Marks	W. test	Seminar	Assignm ent	Total	Grand Total
I.	CCC	Solid State Physics	70	25	10	10	10	30	100
II.	CCC	Lab Course A	-	-	-	-	-	-	100
III	CCC	Lab Course B	-	-	-	-	-	-	100
IV	CCC	Nuclear and Particle Physics	70	25	10	10	10	30	100
V	CCC	Classical Electro Dynamics	70	25	10	10	10	30	100
VI	OSC	Intellectual Property Rights	70	25	10	10	10	30	100
	ECC/CB	Tribal Studies	70	25	10	10	10	30	100
VII	ECC/CB	Microwave Electronics	70	25	10	10	10	30	100
	ECC/CB	Nano Science	70	25	10	10	10	30	100
	ECC/CB	High Energy Physics - III	70	25	10	10	10	30	100
		TOTAL							700

FOURTH SEMESTER

Paper	Course Type	Course er/Subjects)	Exter Writ Te	ten	Cont. Int. Valuation				
Paj	Course	Course (Paper/Subjects)	Max. Marks	Ql. Marlic	W. test	Seminar	Assignm ent	Total	Grand Total
I.	ССС	Materials Science and Laser Physics	70	25	10	10	10	30	100
II.	CCC	Lab Course A	-	-	-	-	-	-	100
III.	CCC	Lab Course B	-	-	-	-	-	-	100
IV	SSC/PRJ	Dissertation	-	-	-	-	-	-	100
V	CCC	Spectroscopy	70	25	10	10	10	30	100
VI	CCC	Statistical Physics	70	25	10	10	10	30	100
	ECC/CB	Energy Physics	70	25	10	10	10	30	100
VII	ECC/CB	Satellite Communication and Remote Sensing	70	25	10	10	10	30	100
	ECC/CB	Crystal Growth & Thin film Physics	70	25	10	10	10	30	100
	ECC/CB	Renormalization and Supersymmetry	70	25	10	10	10	30	100
	-	TOTAL							700

FACULTY OF SCIENCE

M. Sc. in PHYSICS: FIRST SEMESTER (ODD SEMESTER)

Eligibility Criteria (Qualifying Exams)	Admission Criteria	Course Code	Course Type	Course (Paper/Subjects)	Credits	Conta WeeK	ct Hou	rs Per	EoSE Duration (Hrs.)	-
						L	Т	Р	Thy	Р
	e	MSP 101	ССС	Mathematical Physics	6	4	3	00	3	0
line	d by th	MSP 111/112	CCC	Lab Course A/ Lab Course B	6	00	00	6	00	6
liscip	lecide	MSP 102	CCC	Classical Mechanics	6	4	3	00	3	0
ject/ c	Merit List Antrance Test (written or/and oral) if decided by the Jniversity Observance of Reservation Policy.	MSP 103	CCC	Quantum Mechanics I	6	4	3	00	3	0
concerned subject/ discipline		MSP S01	PRJ/FST/EST	Social Outreach and Internship/Entrepreneurship	6	00	00	9	00	4
		ISM seervati 10A seervati	MSP A01	ECC/CB	Constitutionalism &Indian Political System					
Bachelor Degree in the	Test (v / ce of R	MSP A02	ECC/CB	Electronic Devices and Applications	6	4	3	00	3	00
Jegree	Merit List Entrance Te University Observance	MSP ECC/CB	ECC/CB	Condensed Matter Physics - I						
lelor I	Image: Model MSP and									
Bach	1) 2] 3]	MINIMUM CR IT WOULD BE		DUAL SUBJECT IS 6 AND IN COMPLETE SEMESTER	TOTAL= 36					

M.Sc. Semester-I

Paper-I: MSP-101: Mathematical Physics

Course Outcomes

After completing the course the students will able to : -

- **CO -01-** Familiarized with different special functions like Associated Legendre Polynomials, Laguerre's Polynomials, etc. and their solutions in solving different physical problems.
- **CO -02-** To obtain knowledge of Fourier and Laplace Transforms in solving different problems of Mechanics and Electronics etc.
- **CO -03-** Learn about the concept and uses of Tensors and Tensor algebra (Null tensor, addition, subtraction, inner product, outer product).
- **CO-04-** Solve different physical problems which contain complex variables and implementation of complex variable for calculation of integrals, and also able to expand functions in Taylor's and Laurent's series. Knowledge of theorems of residues and contour integration.
- **CO -05-** Obtain the basic knowledge of Group theory and its applications. This theory is also used to describe the crystal symmetry and electronic structure of crystals.
- **CO-06-** Understand the calculus of residue and evaluate some typical definite integral using the Method of contour integration
- **CO-07-** Find explicit expressions of Hermite, Laguerre, Bessel and Legendre polynomials using the corresponding generating functions and derive orthogonality relations and various recurrence relations among these special functions for their applications in solving quantum mechanical ystems.
- **CO -08-** Apply the knowledge of matrices for solving linear algebraic equations and Learn basics of group theory and prepare group multiplication tables for understanding crystallography.

MAPPING OF CO (COURSE OUTCOME) AND PO (PROGRAMME OUTCOME):

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01				\checkmark						
CO-02	~									
CO-03								~		
CO-04				~						
CO-05		~								
CO-06	~				~					
CO-07						✓				
CO-08						~				

	M.Sc. in PHYSICS	FIRST SEMESTER						
COURSE	CODE: MSP 101 COURSI	E TYPE : CCC						
COURSE TITLE: MATHEMATICAL PHYSICS								
CREDIT:	06	HOURS: 90						
THEORY	: 06 PRACTICAL: 00	THEORY: 90 PRACTICAL: 00						
MARKS:								
THEORY Scheme o		PRACTICAL: 00						
ii. S 1 iii. M	 i. Objective type questions: Twelve questions carrying 1 marks each to be asked ten to be attempted ii. Short answer type questions: Five questions carrying 6 marks each to be asked three to be attempted (Word limit 100 words). 							
	50 words). ong answer type questions: three questions car	rying 11 marks each to be set two to be attempted (Word limit						
	50 words).							
UNIT-1 15 Hrs.	and Cauchy's theorem, Cauchy's for Residue theorem - Application to e cayley Hamilton theorem, eigen valu	n Condition, kinds of singularity, Line integrals mula, Taylor and Laurent series, poles, residues, valuation of definite integrals, types of matrices,						
UNIT-2 20 Hrs	-	uations and Second order linear differential Generating Function, Orthogonality, Recurrence						
UNIT-3 20 Hrs	· ·	linear differential equations with constant r transforms, Fourier sine and cosine transforms, cations, Fourier Series.						
UNIT-4 20Hrs	Vector and Tensor Analysis Vector algebra and vector calculus Definition of acclara contraverient Vectors and							
UNIT- 5 15Hrs	Group Theory & probability theory							
 1. Mathematical Methods for Physicists: George Arfken , Academic Press 2. Applied Mathematics for Engineers and Physicists: L. A. Pipe , McGraw Hill 3. Mathematical Methods - Potter and Goldberg , Prentice Hall of India 4. Elements of Group Theory for Physicists: A.W. Joshi, Wiley Eastern Ltd. 5. Vector Analysis (Schaum Series), McGraw Hill 								
M.Sc	. in PHYSICS	FIRST SEMESTER						

COURSI	COURSE CODE: MSP 111 COURSE TYPE : C								
COURSI	E TITLE:	Lab Course A							
	C	REDIT: 03	HOURS: 90						
THEOR	Y: 00	PRACTICAL: 03	THEORY:	00	PRACTICAL:				
					100				
		Marl	KS						
THEOR	Y: 00		(EXPER	PRACTICAL RIMENT:60: VI	: 100 VA-VOCE:20 &				
			(SESSIONAL					
	LAB CO	<u>URSE A:</u>							
	1. To	study the characteristics of SCR							
	2. To	Study the characteristics of TRA	AIC.						
	3. То	o study the characteristics of MOI	FET.						
	4. To	o study the Characteristics of LED).						
	5. To	o study the characteristic of an UJ	Т.						
	6. To	o study the characteristics of FET							
	7. To	o study the characteristic of a DIA	AIC.						
ORK									
LABORATORY WORK MSP 111									
ATORY MSP 111									
AT(MSP									
308									
LAI									

HO THEORY: 00 Marks PRAC (EXPERIMENT	DURSE TYPE : CCC DURS: 90 PRACTICAL: 100 CTICAL: 100 CTICAL: 100 CTICAL: 20 CTICAL: 20
Marks PRAC (EXPERIMENT SESS	PRACTICAL: 100 CTICAL: 100 CTICAL: 100 CTICAL: 20 &
Marks PRAC (EXPERIMENT SESS	PRACTICAL: 100 CTICAL: 100 CTICAL: 100 CTICAL: 20 &
Marks PRAC (EXPERIMENT SESS	100 CTICAL: 100 C:60; VIVA-VOCE:20 &
PRAC (EXPERIMENT SESS	:60; VIVA-VOCE:20 &
(EXPERIMENT SESS	:60; VIVA-VOCE:20 &
s of logic gates.	
s of logic gates.	
ic of NAND gate and its use as a of NOR gate and its use as a un theorem.	_

M.Sc. Semester-I

Paper-II: MSP-102: Classical Mechanics

Course Outcomes

After completing the course the students will able to : -

- **CO- 01-** To apply Lagrangian and Hamiltonian for solving simple classical dynamics problems.
- **CO -02-** Apply Newton's laws of motion and conservation law of energy, linear and angular momentum to solve advanced problems involving the dynamic motion of classical mechanical system
- **CO- 03-** Solve the equations of motion for complicated mechanical systems using the Lagrangian and Hamiltonian formulations of classical mechanics.
- **CO -04-** Explore the application of Hamilton's equations in solving the equation of motion of a particle in a central force field, projectile motion of a body
- **CO -05-** Formulate the equations of rigid body dynamics and demonstrate the examples of non-inertial frames of reference
- **CO -06-** Develop a deep understanding to tackle the problems of small oscillations and special theory of Relativity
- **CO-07-** Newtonian mechanics, Virtual work, DÁlembert's principle, Formulation of Lagrangian mechanics and problem solving with the help of it. Compare the formulation of Hamiltonian
- and Lagrangian mechanics and solve the problems of classical and relativistic mechanics
- **CO -08-** To understand rigid body dynamics and small oscillations using Lagrangian approach
- **CO-09-** Acquire knowledge of Poisson and Lagrange Brackets and establish relationships between their Properties
- **CO -10-** Demonstrate the concept of motion of a particle under central force and apply advanced methods to deal with central force problems.
- **CO -11-** Use Hamilton-Jacobi theory for finding the solutions of various Classical systems

MAPPING OF CO (COURSE OUTCOME) AND PO (PROGRAMME OUTCOME):

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01						~				
CO-02		~								
CO-03				~						
CO-04								~		
CO-05								~		
CO-06		~						~		
CO-07				~						
CO-08	~									
CO-09	~									
CO-10			~				~			
CO-11				√						

	M.Sc. in PHYSICS	FIRST SEMESTER				
COURSE	CODE: MSP 102COURSE TYPE :	CCC				
COURSE	TITLE: CLASSICAL MECHANICS					
CREDIT:	06	HOURS: 90				
THEORY	: 06 PRACTICAL: 00	THEORY: 90 PRACTICAL: 00				
MARKS:	100					
THEORY	: 70 CCA : 30	PRACTICAL: 00				
Scheme	or marks:					
		rrying 1 marks each to be asked ten to be attempted				
	hort answer type questions: Five questions Word limit 100 words).	carrying 6 marks each to be asked three to be attempted				
		is carrying 9 marks each to be set three to be attempted				
	Word limit 250 words).					
	Nord limit 750 words).	s carrying 11 marks each to be set two to be attempted				
	Rigid body dynamics					
-1 urs	Angular momentum, Rotational kir	netic Energy, Moment of inertia of a rigid body				
UNIT-1 15Hours		rincipal axes, moment of inertia tensor, Euler's				
UI 15		of a rigid body, Torque free motion of a rigid				
	body. Central force motion D'Alembert	's Principle and Lagrange's Equation, simple				
6		tion. Hamilton Principle, Calculus of Variations,				
UNIT-2 20Hours		rom Hamilton's principle, Method of Lagrange's				
INL	-	and Symmetry Properties, Noether's theorem.				
2 1		entum and angular momentum as a consequence				
	of homogeneity of time and space an	transformation and Hamilton's Equations of				
20	0	iltonian formulation, cyclic coordinates, Routh's				
		ion of Relativistic Mechanics, Derivation of				
UNIT-3 Houi	Hamilton's canonical Equation from	Hamilton's variational principle. The principle of				
n	least action.					
		ng functions and types of generating functions,				
T-4 Hrs	Lagrange's and Poisson brackets as canonical invariants, equation of motion in Poisson bracket formulation. Infinitesimal contact transformation, Liouvilee's					
UNIT-4 20Hrs		and its applications in simple harmonic oscillator				
	and Kepler's problems .					
10	Definition of Action and angle varial	oles, Applications of Action and angle variables in				
r- 5 Irs		ler's problems, periodic motion, theory of small				
UNIT- 15Hrs		on, normal modes and coordinates and its simple				
	applications.					

 Education, Asia, New Delhi. S. S.N. Biswas, 1998, Classical Mechanics, Books and Allied Ltd., Kolkata. L.D. Landau and E.M. Lifshitz, 1969, Mechanics, Pergomon Press, Oxford. K.R. Symon, 1971, Mechanics, Addison Wesley, London. J.L. Synge and B.A Griffith, 1949, Principles of Classical Mechanics, Mc. Graw-Hill, New York. C.R.Mondal, Classical Mechanics, Prentice - Hall of India, New Delhi. A. Raychoudhary , Classical Mechanics, Oxford University Press

M.Sc. Semester-I

Paper-III: MSP-103: Quantum Mechanics-I

Course Outcomes

After completing the course the students will able to : -

- **CO -01-** Understand and explain the differences between classical and quantum mechanics Learn operator formalism for observables and basic commutation relations.
- **CO -02-** Solve Schrödinger equation for simple potentials like linear Harmonic oscillator and Hydrogen atoms.
- **CO -03-** Understand the space, time and displacement symmetries.
- **CO -04-** Formulate the Heisenberg & Dirac formulation of quantum mechanics-explain various types of imperfections in crystals.
- **CO -05-** Solve the linear harmonic oscillator and hydrogen-like atom problems using Dirac formulation-analyze the mechanisms behind elastic and plastic deformation is solids and compare different strengthening techniques.
- **CO -06-** Demonstrate angular momentum operators associated with spherical and symmetrical systems. -summarize ceramics and its types and relate their applications with properties.
- **CO -07-** Explain scattering theory, formulate and solve scattering equation-classify polymers and composites based on their properties and applications.
- **CO -08-** Apply the Variational principle and WKB Approximation to solve the real problems-Classify nanomaterials, their fabrication techniques and co relate the effects of confinement to nanoscale on their properties.

MAPPING OF CO (COURSE OUTCOME) AND PO (PROGRAMME OUTCOME):

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01	~									
CO-02				\checkmark						
CO-03	~									
CO-04								~		
CO-05				~						
CO-06						√				
CO-07				~						
CO-08						~	~			

M.Sc. in	PHYSICS	FIRST SEMESTER					
COURSE	CODE: MSP 103	COURSE TYPE : CCC					
COURSE	TITLE: QUANTUM MECHANICS I						
CREDIT:	06	HOURS: 90					
THEORY	·: 06	THEORY: 90					
MARKS:	100						
THEORY							
Scheme	of marks:						
ii. S		rrying 1 marks each to be asked ten to be attempted carrying 6 marks each to be asked three to be attempted					
iii. M	liddle answer type questions: Five question	s carrying 9 marks each to be set three to be attempted					
-	Word limit 250 words).	s carrying 11 marks each to be set two to be attempted					
	Word limit 750 words).	s carrying 11 marks each to be set two to be attempted					
UNIT-1 2 OHrs.	Basic formalism Wave functions for a free particle – Intrepretation and condition on the wave function- Postulates of quantum Mechanics and the Schroedinger equation - Ehrenfest's theorem – Operator formalism – Linear operator-Self adjoint operators - Expectation Value - Stationary States –Hermitian Operators for dynamical variables - Eigen value and eigen function.						
UNIT-2 15Hrs	Applications Ladder operators and simple harr	nonic oscillator - Step Potential –Particle in a nomentum and spherical harmonics - Particle in a nd reduction of two body problem.					
UNIT-3 15 Hours		presentation theory - Co-ordinate and momentum chroedinger, Heisenberg and interaction pictures S.					
UNIT-4 20Hrs	Application to ground state of anhar	ory for non- degenerate and degenerate levels - monic oscillator - Variation method - Application WKB approximation - WKB quantization rule - llator.					
UNIT- 5 20 Hrs	relativistic Hamiltonian including s	articles nentum operators -Spin angular momentum-Non pin- Addition of two angular momenta - Clebsch d anti symmetry of wave functions - Pauli's spin					

	1. P.M. Mathews and K. Venkatesan, 1976, A Text book of Quantum Mechanics, Tata McGraw-Hill, New Delhi.
	2. L.I. Schiff, 1968, Quantum Mechanics, 3rd Edition, International Student Edition, McGraw-Hill Kogakusha, Tokyo.
GS	3. V. Devanathan, 2005, Quantum Mechanics, Narosa Publishing House, New Delhi.
READIN	4. E. Merzbacher, 1970, Quantum Mechanics 2nd Edition, John Wiley and Sons, New York.
SUGGESTED READINGS	5. V.K. Thankappan, 1985, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, New Delhi.
	6. P.A.M. Dirac, 1973, The Principles of Quantum Mechanics, Oxford University Press, London.
	7. L.D. Landau and E.M. Lifshitz, 1976, Quantum Mechanics, Pergomon Press, Oxford.
	8.Ashok Das and A.C. Melissions: Quantum Mechanics - A modern approach (Gordon and Breach Science Publishers).

M.Sc. Semester-I

Paper-V: MSP-A01: CONSTITUTIONALISM & INDIAN POLITICAL SYSTEM <u>Course Outcomes</u>

After completing the course the students will able to : -

- **CO -01-** Have a comprehensive understanding of the meaning, features and characteristics of the Preamble of the Constitution of India.
- **CO -02-** Describe in details the difference between Constitution and Constitutionalism.
- **CO -03-** Compare and contrast the different forms of government, namely unitary and federal, parliamentary and presidential with particular reference to Indian Political System.
- **CO -04-** Demonstrate an in-depth knowledge of the concepts of Citizenship, Fundamental Rights, Constitutional amendment procedures and the judicial system in India.
- **CO -05-** Explain in detail the Legislative, Executive and Judicial structure in the Government of India.
- **CO-06-** Critically analyse the process of devolution and decentralization of powers in relation to centre-state government.
- **CO -07-** Show interest in research studies in relevant topics, like decentralization of governance, local self-governance.

MAPPING OF CO (COURSE OUTCOME) AND PO (PROGRAMME OUTCOME):

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01	✓									
CO-02										~
CO-03	✓									
CO-04						√				
CO-05						√				
CO-06		~				\checkmark				
CO-07		~								

	M.Sc. in PHYSICS	FIRST SEMESTER						
COURSE	CODE: MSPA01COURSE TYPE: ECC/CB							
	COURSE TITLE: CONSTITUTIONALISM & INDIAN POLITICAL SYSTEM							
CREDIT:	06	HOURS : 90						
THEORY	: 06	THEORY: 90						
MARKS : THEORY								
	of marks:							
ii. S (1 iii. M	hort answer type questions: Five questions Word limit 100 words).	rrying 1 marks each to be asked ten to be attempted carrying 6 marks each to be asked three to be attempted s carrying 9 marks each to be set three to be attempted						
iv. È	,	s carrying 11 marks each to be set two to be attempted						
UNIT - 1 12 Hrs	Unit- I: Meaning: Constitution, Constitutional government & constitutionalism; Difference between Constitution & Constitutionalism; Constitutionalism: Basis, Elements, Features & future. Forms of Government: Democracy & Dictatorship, Unitary & Federal, Parliamentary & Presidential form							
UNIT - 2 24 Hrs	Directive Principles of the State Policy,	orated in the Preamble. ion, State and Citizenship, Fundamental Rights, Fundamental Duties, Judiciary: Supreme Court and ivism and Public Interest Litigation and Provisions						
UNIT - 3 10 H rs	Unit-III: Union Executive: President, Prime Mini Chief Minister and Council of Ministers.	ster, Council of Ministers, State Executive: Governor, Local Bodies & Panchayati Raj						
UNIT - 4 24 Hrs	Procedure to amend the Indian con 'Separation of Power and the 'Principles Political Parties and Pressure Groups.	s, Legislative Bills: Ordinary, Money and Financial, stitution, Union State Relations, Principles of the s of Check & Balance'. errorism, Regionalism, Communalism, <u>Linguistics</u> and						
UNIT - 5 20 Hrs		ndia, Solicitor General, Advocate General, Election Service Commission, Finance Commission and NHRC						

	HOBBES, Thomas, The Leviathan, Chapters XIII & XVII [entry]					
	LOCKE, John, The Second Treatise of Civil Government, Chapter IX [entry]					
	ROUSSEAU, Jean-Jacques, The Social Contract or Principles of Political Right					
	MONTESQUIEU, The spirit of the laws,					
6	RAZ, Joseph, "The rule of law and its virtue", in The authority of law, Oxford University Press, 1979					
5	Dicey on British constitution					
SUGGESTED READINGS	P. Ishwara Bhat Inter-relationship between Fundamental Rights					
AI	M P Jain Indian Constitutional Law					
RE	H M Seervai Constitutional Law of India					
Q	V N Shukla Constitution of India					
LIS	D DBasu Shorter Constitution of India					
Ë	B Sivarao Constitutional Assembly Debates					
<u>I</u> GC	J. V R Krishna Iyer Fundamental Rights and Directive Principles					
SL	Paras Diwan Human Rights and the Law					
	P K Tripathi Some Insight into Fundamental Rights					
	S P Sathe Fundamental Rights and Amendment to the Constitution					
	P B Gajendragadkar Law, Liberty and Social Justice					
	David Karrys Politics of Law					

M.Sc. Semester-I

Paper-V: MSP-A02: Electronic Devices and Applications

Course Outcomes

After completing the course the students will able to : -

- **CO -01-** Understanding the physics of the devices their characteristics and applications, to be able to use them in electronic circuits.
- **CO -02-** Students would develop an insight into the technologies that go into an IC chip that they would be extensively using during and after the course.
- **CO- 03-** In depth understanding would enable the students to appreciate the beauty of the subject and design amplifiers that are technically sound.
- **CO -04-** Students would develop a comprehensive understanding of contemporary integrated circuit amplifier design.
- **CO -05-** Understand the working of latches, flip-flops, designing registers, counters, a/d and d/a converters.
- **CO -06-** Students would be aware of various signal conditioning, processing and generation techniques thus being better equipped to understand their use in larger and complex systems.

MAPPING OF CO (COURSE OUTCOME) AND PO (PROGRAMME OUTCOME):

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01	\checkmark									
CO-02			✓				✓			
CO-03	~									
CO-04						√				
CO-05	~									
CO-06	~	~								

M.Sc. in PHYSICS FIRST SEMESTER			
COURSE CODE: MSPA02COURSE TYPE : ECC/CB			
COURSE TITLE: Electronic Devices and Applications			
CREDIT:	06	HOURS: 90	
THEORY	: 06	THEORY: 90	
MARKS: 100 THEORY: 70 CCA : 30			
Scheme of marks:			
ii. S (V iii. M	hort answer type questions: Five questions Word limit 100 words). Iiddle answer type questions: Five question	arrying 1 marks each to be asked ten to be attempted carrying 6 marks each to be asked three to be attempted as carrying 9 marks each to be set three to be attempted	
iv. L	<i>N</i> ord limit 250 words). ong answer type questions: three question <i>N</i> ord limit 750 words).	s carrying 11 marks each to be set two to be attempted	
UNIT- 1 20Hrs.	Fabrication of IC and logic families Fabrication of IC - Monolithic integra Monolithic RMS - Voltage measu	ated circuit fabrication - IC pressure transducers - ring device - Monolithic voltage regulators - grated circuit logic - Schottky TTL - ECL - I2L - P cate logic circuits.	
UNIT-2 20Hrs	Emitting LED - Seven segment displ	emitting diodes - Surface emitting LED - Edge ay - LDR - Diode lasers - Photo detectors - Basic oto diode - Solar cells - Photo transistors - IR and	
UNIT-3 20H rs	operation - Schimitt trigger - Phase detector - Voltage Controlled Oscill	table operation - Frequency divider - Astable Locked Loops - Basic principles - Analog phase ator - Voltage to Frequency conversion - PLL IC e - Capture range - Application - Frequency	
UNIT-4 15Hrs	- Sample and Hold circuits - Log a	nd I to V converter - Op-amp circuits using diodes nd Antilog amplifiers - Multiplier and Divider - imitt Trigger - Astable, Monostable Multivibrator wave generators - Rc Active filters.	
UNIT- 5 15Hrs	Pulse Time Modulation - Pulse Widt (PPM) - Pulse Code Modulation (Generation and Demodulation of PC of PCM - Pulse systems - Telegraph	n - Types - Pulse-Amplitude Modulation (PAM) - h Modulation (PWM) - Pulse Position Modulation PCM) - Principles of PCM - Quantizing noise - M - Effects of Noise - Advantages and applications ny - Frequency-Shift keying - Telemetry - Digital ation - Modes of modem operation - Modem g.	

	1. S.M. Sze, 1985, Semiconductor Devices - Physics and Technology, Wiley, New York.	
	2. Millman and Halkias, Integrated Electronics, McGraw-Hill, New Delhi.	
	3. R.A. Gaekwad, 1994, Op-Amps and intergrated circuits EEE.	
	4. Taub and Shilling, 1983, Digital Integrated Electronics, McGraw-Hill, New Delhi.	
	5. J. Millman, 1979, Digital and Analog Circuits and Systems, McGraw-Hill, London.	
SUGGESTED READINGS	6. George Kenndy, 1987, Electronic communication systems 3rd Edition, McGraw-Hill, London.	
	7. R.F. Coughlin and F.F, Driscol, 1996, Op-Amp and linear integrated circuits, Prentice Hall of India, New Delhi.	
	8. M.S.Tyagi, Introduction to Semiconductor Devices, Wiley, New York.	
	9. P. Bhattacharya, 2002, Semiconductor Optoelectronic Devices, 2nd Edition, Prentice-Hall of India, New Delhi.	
	10. Deboo/ Burrous, 1985, Integrated circuits and semiconductor Devices - Theory and application, McGraw-Hill, New Delhi.	
	11. D. Roy Choudhury, 1991, Linear integrated circuits, Wiley Eastern, New Delhi.	
	12. Ramakant Gaekwad, 1981, Operational amplifiers, Wiley Eastern, New Delhi.	

Paper-V: MSP-A03: CONDENSED MATTER PHYSICS – I

Course Outcomes

After completing the course the students will able to : -

- **CO -01-** Have an understanding of basic physical concepts (like band gap, holes, effective mass, etc.) related to semiconductors.
- **CO-02-** Appreciate the concept and importance of Fermi surface of metals and its experimental determination through De Hass-van Alphen effect, along with magneto-transport in a 2D channel.
- **CO -03-** Learn the description of collective excitations of the Fermi Sea (plasmons) and the electrostatic screening of electron-impurity interaction, in terms of the dielectric function of the electron gas.
- **CO -04-** Understand different physical quantities (reflectivity coefficient, reflectance, real & imaginary parts of response etc.) related to the optical response of solids, and Raman Effect in crystals.
- **CO -05-** Relate the dielectric polarization with the macroscopic electric field and the local electric field acting on an atom in the dielectric, along with frequency dependence of polarizability.
- **CO -06-** Comprehend ferroelectricity and the Landau theory of phase transition.
- **CO -07-** Calculate magnetic susceptibility for atoms, insulating solids and conduction electrons, and have an understanding of the microscopic origin of ferromagnetism and anti-ferromagnetism.
- **CO-08-** Determine the low-energy excitations (spin waves/magnons) for ferromagnetic and antiferromagnetic systems, understand principle underlying their experimental measurement, and learn about ferromagnetic domains.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01	~									
CO-02						~				
CO-03								~		
CO-04	~									
CO-05										~
CO-06	~									
CO-07				~						
CO-08			~							~

	M.Sc. in PHYSICS	FIRST SEMESTER				
COURSE	CODE: MSP A03	COURSE TYPE : ECC/CB				
COURSE	TITLE: CONDENSED MATTER PHYSICS – I					
CREDIT:	06	HOURS : 90				
THEORY	: 06	THEORY: 90				
MARKS :						
THEORY						
Scheme	of marks:					
		rrying 1 marks each to be asked ten to be attempted				
	Chort answer type questions: Five questions Word limit 100 words).	carrying 6 marks each to be asked three to be attempted				
iii. M	liddle answer type questions: Five question	s carrying 9 marks each to be set three to be attempted				
C C	Word limit 250 words).	a comming 11 months and to be get two to be attempted				
	Word limit 750 words).	s carrying 11 marks each to be set two to be attempted				
	Phase transformation and alloys:	Equilibrium transformation of first and second				
- 1 rs.		ase rule, interpretation of phase diagrams,				
UNIT- 1 20Hrs.		ard's law, intermediate phases, Hume-Rothery				
U 2	rules, interstitial phases (carbid transitions.	es, nitrides, hydrides, borides). Martensitic				
		s and GMR/CMR materials: High temperature				
		perties (structural phase transition) of cuprates,				
T-2 Irs		ibution into CuO2 planes, striped phase, phase				
UNIT-2 20Hrs		of Tc on crystal structure, effect of impurities				
	-	n-Popper series of perovskites. Onset of				
	ferromagnetism and metallic conduc					
IIT-3 H rs	-	bon solids, fullerenes and tubules, formation and bules. Single wall and multi-wall carbon tubules.				
		bon nanotubule based electronic devices.				
UN 20						
		plass transition temperature, effect of molecular				
r-4 Irs		perature, free volume theory for glass transition,				
UNIT-4 15 Hrs		d gap of polymers, electrical conduction in				
1 1	blends and composites.	and thermal properties of polymers, polymer				
	*	ctron structure determination:Basic theory of X-				
		cherrer patterns from powder samples, examples				
S U	from some cubic and non-cubic sym	metries. Neutron diffraction – basic interactions,				
UNIT- 5 15 Hrs		nd structure factor. Basic principles of X-ray				
1: 1:		mission and positron annihilation techniques.				
		ntal arrangement and of typical results for both				
	simple as well as transition metals.					

S	1. Andrei Mourachkine: Room temperature superconductivity, Cambridge
ING	International Science Publishing.
READINGS	2. C.N.R. Rao: Colossal magnetoresistance, charge ordering and related properties of
	managanese oxide, Woprld Scientific, 1998
SUGGESTED	3. Polymer Physics by Ulf W. Gedde, Chapmann & Hall, 2001.
ngg	4. Introduction to Polymer Physics by David. I. Bower.
S	5. Polymer Science by J.R. Fried.

Paper-V: MSP-A04: HIGH ENERGY PHYSICS I

Course Outcomes

After completing the course the students will able to : -

CO-01-Realize the Fundamental constituents of matter, their origination

CO-O2-Understand qualitative and quantitative analysis of Resonance and Dalitz plots.

CO-O3-Formulate Quantum mechanical scattering theory leading to understand origination of field particles.

CO-O4-Understand three major interactions viz strong, electromagnetic and weak are in existence.

CO-O5-Understand Isospin formulation and its fundamentals.

CO-O6-Invariance and violation of various conservation laws and symmetries in these interactions.

CO-O7-Understand fundamental knowledge of the subject matter leading to the attempt for grand unification.

CO-O8-Formulate Parity conservation, violation and Charge conjugation invariance.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01										~
CO-02	~		~							
CO-03				\checkmark						
CO-04	\checkmark									
CO-05										\checkmark
CO-06	\checkmark				\checkmark					
CO-07				\checkmark						
	\checkmark									
CO-08			\checkmark							

Μ	Sc. in PHYSICS	FIRST SEMESTER				
COURSE	CODE: MSPA04	COURSE TYPE : ECC/CB				
COURSE	TITLE: HIGH ENERGY PHYSICS I					
CREDIT:	06	HOURS : 90				
THEORY	: 06	THEORY: 90				
MARKS :						
THEORY Scheme	: 70 CCA : 30					
: 0	histing true questions. Truelus questions as	www.w.g.1 wearlys each to be called too to be attornated				
		rrying 1 marks each to be asked ten to be attempted carrying 6 marks each to be asked three to be attempted				
	Word limit 100 words).					
	Nord limit 250 words).	s carrying 9 marks each to be set three to be attempted				
iv. È	ong answer type questions: three question	s carrying 11 marks each to be set two to be attempted				
(Nord limit 750 words). Elementary particles and the fundame	tal forces. Quarks and leptons. The mediators of the				
1 rs.		actions. Interaction of particles with matter; particle				
UNIT- 1 20Hrs.						
	acceleration, and detection techniques.					
01		tions in experimental particle physics and relation to				
UNIT-2 20Hrs	theoretical developments.					
UN 20						
	Symmetries group theory. The gourn	SU92), Finite Symmetry Group: P and C, SU(2) of				
IIT-3 H rs	Isospin, The group SU(3)					
UNIT-3 20 H rs	isospin, The group So(S)					
	Quark and Antiquark states: Mesone T	hree quark states: Baryon, color factors, Asymptotic				
-4 rs	_					
UNIT-4 15 Hrs	freedom. Charged and neutral weak int	eractions. Electroweak unincation.				
U 1						
υ s	Decay rates. Cross sections. Feynman d	agrams Introduction to Feynman integrals. The Dirac				
UNIT- 5 15 Hrs	equation. Feynman rules for quantum e	lectrodynamics (no derivation).				
UN 15						

S	1. Francis Halzen and Allan D. Martin, Quarks and Leptons: An Introductory Course in
READINGS	Modern Particle Physics, John Wiley and Sons
KEAI	2. B.R. Martin and G. Shaw, Particle Physics, 2nd edition, J. Wiley and Sons (1997).
	3. The Review of Particle Physics, Particle Data Group
SUGGESTED	4. David Griffiths, Introduction to Elementary Particles
JGG	5. Byron Roe Particle Physics at the New Millennium
SI	6. Donald Perkin, Introduction to high energy physics.

FACULTY OF SCIENCE

M. Sc. in PHYSICS SECOND SEMESTER (EVEN SEMESTER)

Eligibility Criteria (Qualifying	Course CodeCourse TypeCourse (Paper/Subjects)Course		Credits	Contact Hours Per WeeK			EoSE Duration (Hrs.)		
Exams)					L	Т	Р	Thy	Р
ctive	MSP 201	ССС	Electronics	6	4	3	00	3	0
After appearing in the first semester examination irrespective of any number of back/ arrear papers	MSP 211/212	CCC	Lab Course A / Lab Course B	6	00	00	6	0	6
	MSP 202	ССС	Atomic and Molecular Physics	6	4	3	00	3	0
	MSP 203	CCC	Quantum Mechanics II	6	4	3	00	3	0
ır exar s	MSP 221	OSC	Research methodology & computer Application: basics	6	4	3	00	3	00
meste paper	MSP B01	ECC/CB	Environmental and Forest Laws						
first se arrear	MSP B02	ECC/CB	Electronic Instrumentation						
in the f back/	MSP B03	ECC/CB	Condensed Matter Physics – II	6	4	3	00	3	00
pearing umber o	MSP B04	ECC/CB	High Energy Physics – II						
After appearing in the first semester of any number of back/ arrear papers	MINIMUM	CREDITS IN INDIVIDU	IAL SUBJECT IS 6 AND IN COMPLETE SEMESTER IT WOULD BE 30	TOTAL= 36					

Paper-I: MSP-201:Electronics

Course Outcomes

After completing the course the students will able to : -

CO -01- Acquire knowledge of operational amplifier circuits and their applications.

- **CO -02-** Gain knowledge and evaluate the Boolean expressions, combinational logic circuits and Simplifications using Karnaugh maps.
- **CO -03-** Analyze the operation of decoders, encoders, multiplexers, adders and subtractors.
- **CO 04-** Understand the working of latches, flip-flops, designing registers, counters, a/d and d/a converters.
- **CO 05-** Design and Analyze synchronous and asynchronous sequential circuits.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01	\checkmark									
CO-02		~								
CO-03						~				
CO-04	~									
CO-05						~				

	M.Sc. in PHYSICS	SECOND SEMESTER								
COURSE	CODE: MSP 201	COURSE TYPE : CCC								
COURSE	TITLE: ELECTRONICS									
CREDIT:	06	HOURS: 90								
THEORY	: 06 PRACTICAL: 00	THEORY: 90 PRACTICAL: 00								
MARKS:										
	THEORY: 70 CCA : 30 PRACTICAL: 00 Scheme of marks:									
	Scneme of marks:									
		ing 1 marks each to be asked ten to be attempted (Word rrying 6 marks each to be asked three to be attempted (Word								
	mit 100 words). Iiddle answer type questions: Five questions car	rying 9 marks each to be set three to be attempted (Word limit								
2	50 words).									
	ong answer type questions: three questions car 50 words).	rying 11 marks each to be set two to be attempted (Word limit								
UNIT-1 20 HrS.	output differential amplifier, AC and CMRR-constant current bias level tra Open loop configuration, inverting an feedback, effect of feedback on closed	nplifier - circuit configurations - dual input, balanced DC analysis, inverting and non-inverting inputs, nslator. Block diagram of typical OP-Amp analysis. Ind non-inverting amplifiers, Op-Amp with negative loop gain, input resistance, bandwidth and output cal Op-Amp, input offset voltage-input bias current- voltage, integrator and differentiator.								
UNIT- 2 15 Hre		ble, the phase-shift oscillator, Wein bridge oscillator,								
UNIT- 3		and their principle, Types of Multivobrators ultivibrators), Comparators, clamping and clipping								
UNIT-4 20Hrs	Karnaugh Map Representation of logic K-Map, Minimization of Logical function Don't care conditions, Adder (half an	gic: Standard representations for logic functions, cal functions, Simplification of logical functions using ons specified in Minterms / Maxterms or truth table, d full), Subtractor (half and full), Multiplexers and ces, BCD arithmatics, Seven Segment display device.								
UNIT-5 20Hrs	flops, shift resisters - synchronous an D/A conversion- Basic principles and	memory, RS, JK, JK master slave, T and D type flip d asynchronous counters, Decade counter. A/D and their circuitry, Basic idea of IC 555, Opto-electronic Light emitting Diode and their applications								
	1. "Electronic Devices and Circuit Theo	ry" by Robert Boylested and Louis Nashdsky, PHI,								
	New Delhi - 110001, 1991.									
SUGGESTED READINGS	2. "OP-AMP and Linear Integrated Circ	uits" by Ramakanth, A. Gayakwad, PHI, Second								
iGE! ADI	Edition 1991.									
SUG RE	3. "Digital Principle and Applications"	by A.P. Malvino and Donald P. Leach, Tata McGraw								
	Hill Company, New Delhi, 1993.									

		M.Sc	c. in PHY	/SICS				
			SECO	ND SEMESTER				
COURSE	CODE:	MSP 211		COUR	SE TYPE : CCC			
COURSE	TITLE: I	Lab Course A						
		CREDIT: 03		HOURS: 90				
THEORY	: 00	PRACTICAL: 03		THEORY: 00	PRACTICAL: 100			
			Marks					
THEORY	: 00			PRACTICA (EXPERIMENT:60; V SESSIONA	IVA-VOCE:20 &			
	LAB CO	URSE A:						
	1. T	o find the root of an Equ	uation u	sing secant method.				
	2. To find the modification of Euler equation by using c.							
		3. To find the real roots of the given function by implement lagragian inverse formula.						
/ORK		 To find the real roots of any polynomial equation through graeffe's Method. 						
LABORATORY WORK MSP 211	5. T	o find the value of defin	ite integ	gral using simpson's Me	thod.			
RATORY MSP 211	6. T	o find the real root of th	ne given	function using Regula fa	alsi Method.			
ABO	7. T	o find the root of an equ	uation us	sing Runga Kutta second	d order Method.			
Γ		o find the solution of lin limination method.	near sim	ultaneous equation usir	ng gauss			
		9. To calculate finite integral or area under a curve using trapezoidal method.						
		Го find the real root of tl Iethod.	he given	function using by fixed	point interaction			

M.Sc.	in PHYSICS		SECO	OND SEMESTER			
COURSE	CODE:	MSP 212	COURSE	ЕТҮРЕ : ССС			
COURSE	TITLE: Lab	Course B					
	CRED	IT: 03	HOURS: 90				
THEORY	: 00 P	PRACTICAL: 03	THEORY: 00	PRACTICAL: 100			
		Mark	s				
THEORY	: 00		PRACTICAI (EXPERIMENT:60; V SESSIONAI	IVA-VOCE:20 &			
	LAB COURS	<u>SE B:</u>					
LABORATORY WORK MSP 212	 To st To st To co To co To co To co To st To st To st To st To st To st 	onstruct Ex-OR Gate and Ex tudy NOR gate as a universa tudy NAND gate as a univer onstruct half adder using Ex onstruct full adder using Ex tudy the DAC convertor. tudy the ADC convertor. tudy the clocked R-S flip-flo tudy the clocked D-type flip tudy the clocked D-type flip	al gate. sal gate. c-OR gate. c-OR gate. p using NOR /NAND gate. -flop using NOR/NAND ga				

Paper-II: MSP-202: Atomic & Molecular Physics

Course Outcomes

After completing the course the students will able to : -

CO- 01- Deal with problems related to Hydrogen-like atomic spectra.

- **CO -02-**Having knowledge about the rotational, vibrational and Raman spectroscopy of molecules.
- CO -03- Developing analytical, laboratory and computing skills through problem solving, laboratory & computer based exercises which involve the applications of atomic and molecular physics.

CO -04- Carry out experimental and theoretical studies on atomic and molecular physics with focus on structure & dynamics of atoms and molecules.

- **CO- 05-**Account for theoretical models, terminology & working methods used in atomic and molecular physics.
- **CO -06-**To successfully apply the theoretical techniques presented in course to practical problems.
- **CO -07-** comprehend the instrumentation techniques that are used in different regions of spectra.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01								~		
CO-02	~		~							
CO-03		~	~			√				
CO-04						~				
CO-05									✓	
CO-06						~				
CO-07							✓			

	M.Sc. in PHYSICS SECOND SEMESTER								
COURSE	CODE: MSP 202	COURSE TYPE : CCC							
COURSE	TITLE: ATOMIC AND MOLECULAR PHY	SICS							
CREDIT:	06	HOURS: 90							
THEORY	: 06 PRACTICAL: 00	THEORY: 90 PRACTICAL: 00							
MARKS:	100								
THEORY	: 70 CCA : 30	PRACTICAL: 00							
		rrying 1 marks each to be asked ten to be attempted carrying 6 marks each to be asked three to be attempted							
('	Word limit 100 words).								
	liddle answer type questions: Five question Word limit 250 words).	s carrying 9 marks each to be set three to be attempted							
iv. L	ong answer type questions: three question	s carrying 11 marks each to be set two to be attempted							
_	Word limit 750 words).	on method and their simple Applications, relativistic							
UNIT-1 20 Hrs.		Quantum mechanical treatment of stark effect, atom							
UNI 201	in a weak uniform external electric field	l, first and second order Stark effect							
IT-2 Hrs	•	tion theory, linear Stark effect for hydrogen atom							
UNIT-2 15 Hrs	•	on and weak magnetic field, Zeeman effect, effect of nteraction, Lamb shift (only qualitative description).							
1		nmetry, many particle wave functions and Pauli's							
	exclusion principle, spectroscopic ter	rms for atoms. Variational method and its use in							
UNIT-3 20 Hrs		eitler London method for hydrogen molecule. WKB n, application to bound states (Bohr Sommerfeld							
	quantization) and the barrier penetration	on.							
		tures of the spectra of one and two electron system – of emission spectra using examples, general features							
UNIT-4 20Hrs		n band spectrum of a molecule, P,Q and R branches.							
UN 20	Raman spectra for rotational and vit	prational transitions, General features of electronic							
	spectra, Frank and Condon's principle.	The scattering force, chirp cooling, optical molasses							
r- 5 Irs		gneto optical trap, Magnetic trap (only qualitative							
UNIT- 5 15Hrs		ture atoms produced by Laser cooling, Bose-Einstein							
	condensation in trapped atomic vapour 1. G. Banewell – Atomic and Molecular s								
	2. Christopher J. Foot – Atomic Physics,	Oxford Master series, 2005							
ED GS	3. G.K. Woodgate, Elementray Atomic St 4. T.A. Littlefield - Atomic and Molecula	ructure, Second Edition Clarendon Press, Oxford.							
EST		sics of Atoms. Molecules Solids and Nuclear Particles.							
SUGGESTED READINGS	-	antum Mechanics ; A Modem Approach (Gordon and							
SI H	Breach Science Publishers). 7. White - Atomic Spectra. 8. Herzberg-	Molecular spectra.							
		- F							

Paper-III: MSP-203:Quantum Mechanics-II

Course Outcomes

After completing the course the students will able to : -

- **CO 01-** Understand the kinematics of scattering process.
- **CO 02-** Evaluate the partial wave analysis using Born approximation method.
- **CO 03-** Applytime Independent perturbation theory for non-degenerate case.
- **CO 04-** Gain knowledge on WKB approximation method to study alpha decay. Remember time dependent perturbation theory.
- **CO 05-** Analyze the interaction of an atom with electromagnetic radiation and the relativistic quantum mechanics using Klein Gordon equation, Explore the properties of gamma matrices.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01	\checkmark									
CO-02									√	
CO-03						√				
CO-04	~									
CO-05						\checkmark				

I	M.Sc. in PHYSICS	SECOND SEMESTER				
COURSE	CODE: MSP 203	COURSE TYPE : CCC				
COURSE	TITLE: QUANTUM MECHANICS II					
CREDIT:	06	HOURS: 90				
THEORY	: 06 PRACTICAL: 00	THEORY: 90				
MARKS: THEORY						
Scheme	of marks:					
ii. S	hort answer type questions: Five questions <i>N</i> ord limit 100 words).	arrying 1 marks each to be asked ten to be attempted carrying 6 marks each to be asked three to be attempted as carrying 9 marks each to be set three to be attempted				
/)	Word limit 250 words).					
	ong answer type questions: three question: Nord limit 750 words).	s carrying 11 marks each to be set two to be attempted				
UNIT-1 20 Hrs.	 Scattering Theory Scattering amplitude - cross sections-Relation between differential cross section and scattering amlitude - Transformation from centre of mass to laboratory frame-Relation between scattering angle in L frame and C-M frame-Partial wave analysis-Born approximation and its validity. 					
UNIT-2 15 Hrs	Perturbation Theory Time dependent perturbation theory - Harmonic perturbations - Transition					
UNIT-3 20 Hrs	Relativistic Quantum Mechanism Klein-Gordon equation - Failures - Dirac equation - Plane wave solutions -					
UNIT-4 20Hrs		roperties of gamma matrices, Invariance of Dirac tion - T-Transformation for the Dirac equation in				
UNIT-5 15 Hrs	Cubic potential – Multidimension po	x – Particle in 3D box – Finite potential well – tential - Infinite potential well – Symmetric Il well – Linear harmonic oscillator (1D,2D,3D).				

	1. Ashok Das and A.C. Milissiones : Quantum mechanics - A Modern Approach, Garden and Breach Science Publishers.
	2. J.J. Sakurai : Advanced Quantum Mechanics (John Wiley)
S ID	3. E. Merzbacher, 1970, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New York.
SUGGESTED READINGS	4. J.D. Bjorken and S.D. Drell, 1964, Relativistic Quantum Mechanics, McGraw-Hill, New York.
S _	5. V.K. Thankappan, 1985, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, New Delhi.
	6. L.D. Landau and E.M. Lifshitz, 1958 Quantum Mechanics, Pergomon Press, London.
	7. G. Aruldhas, 2002, Quantum Mechanics, Prentice-Hall of India, New Delhi.

Paper-IV: MSP-221:RESEARCH METHODOLOGY & COMPUTER APPLICATION: BASICS

Course Outcomes

After completing the course students will be able to demonstrate-

- **CO-01-** Knowledge of research process reading evaluating developing and analyzing the ideas/ thought in critical/ analytical manner.
- **CO-02-** literature reviews using print and online database of the subject and allied branches in perspectives of its inter -relation and so on.
- **CO-03-** competent use of MLA and APA format for citation of print and electronic materials available .
- **CO-04-** Potentials to identify explain, compare and prepare the key elements of research proposal and research report.
- **CO-05-** Compare and contrast qualitative and quantitative research paradigms and to explain the use of each in research.
- **CO-06-** The rationale for research ethics and importance of local processes for Institutional Review Board reviews for its rational improvisation.
- **CO-07-** How Educational research contributes to the objectives of doctoral programme and specific career in higher education
- **CO-08-** Competent use of information received in general social welfare and issues relevant and focused in the context of humanity as whole and its positive solutions in larger interest be devised.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01	~									
CO-02									~	
CO-03							✓			
CO-04		~								
CO-05										~
CO-06		~						✓		
CO-07		~								✓
CO-08			~			~	~			

]	M.Sc. in PHYSICS	SECOND SEMESTER					
COURSE	CODE: MSP 221	COURSE TYPE : OSC					
COURSE	TITLE: RESEARCH METHODOLOGY &	COMPUTER APPLICATION: BASICS					
CREDIT:	06	HOURS: 90					
THEORY	: 06 PRACTICAL: 00	THEORY: 90					
MARKS:							
THEORY							
Scheme	of marks:						
		rrying 1 marks each to be asked ten to be attempted					
		carrying 6 marks each to be asked three to be attempted					
	Word limit 100 words). Iiddle answer type questions: Five question	s carrying 9 marks each to be set three to be attempted					
	Word limit 250 words).	is carrying 5 marks each to be set three to be attempted					
iv. È	ong answer type questions: three question	s carrying 11 marks each to be set two to be attempted					
(Word limit 750 words).						
	CONCEPT OF RESEARCH :	f research Stops in research process. Types of					
	Meaning and characteristics of research , Steps in research process , Types of research -						
.1 rs.	i) Basic, applied and action researchii) Quantitative and qualitative research, Areas of						
UNIT-1 15 Hrs.	research in concern discipline						
U 15	SELECTION OF PROBLEM FOR RESEARCH :						
	-	n ,Criteria of the selection of the problem ,Drafting a					
		of variables ,Meaning and types of hypotheses.					
	TOOLS OF RESEARCH :	an about construction procedure of (i) Questionnaire					
rs	5 5	n about construction procedure of (i) Questionnaire,					
15 Hrs	(ii) Interview, (iii) Psychological test, (iv) observation (v) Rating scale (vi) Attitute scale and (vii) check list, Advantages and disadvantages of above tools						
	SAMPLING :						
T-2	Meaning of population and sample , I	mportance and characteristics of sample , Sampling					
UNIT		: random sampling, stratified random sampling,					
n		g ii)Non-probability sampling: incidental sampling,					
	purposive sampling, quata sampling						
n v	METHODS OF RESEARCH	following methods of research · Historical method					
UNIT-3 15 Hrs	Meaning and conducting procedure of following methods of research : Historical method Survey method , Case study , Causal comparative method , Developmental methods,						
UN 15	Experimental methods						
	TREATMENT OF DATA :						
		ta , Steps in treatment of data: editing, coding,					
UNIT-4 15 Hrs	classification, tabulation, analysi						
NI 5 H	WRITING RESEARCH REPORT :	-					
1 1		nary section , Content section: various chapters ,					
	Supplementary section: appendi	ces, references, abstract , Format and style					

	Computer Fundamentals
	Computer System : Features, Basic Applications of Computer, Generations of computers.
	Parts of Computer System : Block Diagram of Computer System ; Central Processing Unit
	(CPU) ; Concepts and types of Hardware and Software, Input Devices - Mouse, Keyboard,
10 60	Scanner, Bar Code Reader, track ball ; Output Devices - Monitor, Printer, Plotter, Speaker ;
Hr.	Computer Memory - primary and secondary memory, magnetic and optical storage devices.
UNIT-5 15 Hrs	Operating Systems - MS Windows : Basics of Windows OS ; Components of Windows -
	icons, taskbar, activating windows, using desktop, title bar, running applications, exploring
	computer, managing files and folders, copying and moving files and folders ; Control panel :
	display properties, adding and removing software and hardware, setting date and time,
	screensaver and appearance ; Windows Accessories : Calculator, Notepad, WordPad, Paint
	Brush, Command Prompt, Windows Explorer.
	Office Software Package
	Word Processing - MS Word : Creating, Saving, Opening, Editing, Formatting, Page Setup
	and printing Documents ; Using tables, pictures, and charts in Documents ; Using Mail Merge
NO IO	sending a document to a group of people and creating form, letters and label.
UNIT-6 15 Hrs	Spreadsheet - MS Excel :Opening a Blank or New Workbook, entering data/Function/
N 2	Formula into worksheet cell, Saving, Editing, Formatting, Page Setup and printing
	Workbooks.
	Presentation Software - MS Power Point : Creating and enhancing a presentation,
	modifying a presentation, working with visual elements, adding Animations & Transitions
	and delivering a presentation

 Agrawal, Y. P. (1988). Better sampling : Concepts, Techniques and Evaluation.New Dell sterling Publishers Private Ltd.Best, J. W. (1993). Research in Education (6th ed.)New Delhi : Prentice-Hall of India Pvt. Ltd. Broota, K. D. (1992) Experimental design in Behavioral Research (2nd ed.) New Delhi : Wiley Eastern Limited. Dasgupta, A. K. (1968). Methodology of Economic Research.Bombay: Asia Publishing House.Edwards, A. L. (1957). Techniques of Attitude Scale construction.New York : Apple Contury Gall, M. D., Gall, J. P. and Borg, W. R. (2007). Educational Research : An introduction (8th ed.) Coston : Allyn and Bacon. Garrett, H. E. & Woodworth, R. S. (1969). Statistics in Psychology and Education.Bombay :Vakils, Fecffer& Simons Pvt. Ltd. Goode, W. J. &Hatt, Paul K. (1952). Methods in Social Research.New York : McGraw-Hill. Gopal, M. H. (1964). An Introduction to research Procedure in Social Sciences. Bombay Asia Publishing House. Hillway, T. (1964) Introduction to Research (2nd ed.) Noston : Houghton Miffin. Hyman, H. H., et al. (1975). Interviewing in Social Research. (2nd Indian Reprint) New York : R. (2007) Research Methodology: Methods & Techniques(3rd ed.) New Delhi : WishwaPrakashan.Fundamentals Of Computers, Dr. P. Mohan, Himalaya Publis. House. Microsoft First Look Office 2010, K. Murray, Microsoft Press. Fundamental Of Research Methodology And Statistics, Y.K. Singh, New Age International (P) Limited, Publishers. Practical Research Methods, Dr Catherine Dawson, The Essence Of Research Methodology, Jan Jonker&BartjanPennink, Springer. 	eton- , :
---	-----------------

Paper-V: MSP-B01: ENVIRONMENTALAND FOREST LAWS

Course Outcomes

After completing the course the students will able to : -

- **CO- 01-** The primary learning outcome is to sensitize the students towards human activities that adversely affect the environment and the need for regulation of such activities.
- **CO -02-** Students will develop a thorough understanding of practice and procedure followed by various environmental law enforcing agencies/bodies.
- **CO 03-** Students will be able to pursue environmental litigation before the National Green Tribunal and assist the Tribunal as a researcher or in any other capacity.
- **CO 04-** Students will be able to assist industries and projects in obtaining environmental clearance and compliances with other environmental laws.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01								~		
CO-02						√				~
CO-03		~								~
CO-04		~								~

	M.Sc. in	PHYSICS	SECOND SEMESTER						
COUR	SE CODE : I	MSPB01	COURSE TYPE : ECC/CB						
	COURSE TITLE: ENVIRONMENTALAND FOREST LAWS								
CRED	CREDIT: 06 HOURS : 90								
THEO	RY: 06		THEORY: 90						
MARK THEO		CCA : 30							
	ne of marks:								
i. ii. iii. iii.	 ii. Short answer type questions: Five questions carrying 6 marks each to be asked three to be attempted (Word limit 100 words). iii. Middle answer type questions: Five questions carrying 9 marks each to be set three to be attempted (Word limit 250 words). 								
	(Word limit	750 words).							
UNIT - 1 18 Hrs	a) b) c) d) e)	LUTION OF FOREST AND WIL Importance of Forest and Evolution of Forest and W Forest Policy during Briti Forest Policies after Indep Methods of Forest and Wi	Wildlife /ild Life Laws sh Regime pendence.						
	FORE	EST PROTECTION AND LAW							
UNIT - 2 18 Hrs	a) b) c) c) d)	Indian Forest Act, 1927 Forest Conservation Act, Rights of Forest Dwellers The Forest Rights Act, 200 National Forest Policy 190	and Tribal 06						
	WILD	DLIFE PROTECTION AND LAV	V						
UNIT - 3 18 H rs	a) b) c)	Wild Life Protection Act, 2 Wild Life Conservation st The National Zoo Policy							

	CHAPTER -	BASIC CONCEPTS					
	a.	Meaning and definition of environment.					
	b.	Multidisciplinary nature of environment					
	с.	Concept of ecology and ecosystem					
	d.	Importance of environment					
	e.	Meaning and types of environmental pollution.					
	f	Factors responsible for environmental degradation.					
UNIT - 4	CHAPTER-	INTRODUCTION TO LEGAL SYSTEM					
	a.	Acts, Rules, Policies, Notification, circulars etc					
5	b.	Constitutional provisions on Environment Protection					
UN 10 H or	с.	Judicial review, precedents					
	d.	Writ petitions, PIL and Judicial Activism					
	CHAPTER -	LEGISLATIVE FRAMEWORK FOR POLLUTION CONTROL LAWS					
	a)	Air Pollution and Law.					
	b)	Water Pollution and Law.					
	c)	Noise Pollution and Law.					
	CHAPTER-	LEGISLATIVE FRAMEWORK FOR ENVIRONMENT PROTECTION					
	2)	Environment Protection Act & rules there under					
	a)	Hazardous Waste and Law					
	b)						
	c) d)	Principles of Strict and absolute Liability. Public Liability Insurance Act					
	e)	Environment Impact Assessment Regulations in India					
_	ej	Environment impact Assessment Regulations in mula					
UNIT - 5		ENVIRONMENTAL CONSTITUTIONALISM					
INU 10 Hai	a.	Fundamental Rights and Environment					
0	01	i) Right to EqualityArticle 14					
	-	ii) Right to InformationArticle 19					
		iii) Right to LifeArticle 21					
		iv) Freedom of Trade vis-à-vis Environment Protection					
	b.	The Forty-Second Amendment Act					
	С.	Directive Principles of State Policy & Fundamental Duties					
	d.	Judicial Activism and PIL					

Paper-V: MSP-B02: ELECTRONIC INSTRUMENTATION

Course Outcomes

After completing the course the students will able to : -

- **CO -01-** Measure various electrical parameters with accuracy, precision, resolution.
- **CO -02-** Design different types of amplifiers and filters.
- **CO -03-** Select specific instrument for specific measurement function.
- **CO -04-** Understand principle of operation, working of different electronic instruments like digital multi meter, vector voltmeter, and power factor meter.
- **CO -05-** Analyze the functioning, specification, and applications of signal generators and

signal analyzing instruments.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01	\checkmark									
CO-02						~				
CO-03								√		
CO-04								✓		
CO-05						\checkmark				

	M.Sc. in PHYSICS	SECOND SEMESTER							
COURSE	CODE: MSP B02	COURSE TYPE : ECC/CB							
COURSE TITLE: ELECTRONIC INSTRUMENTATION									
CREDIT: 06 HOURS : 90									
THEORY	: 06	THEORY: 90							
MARKS : THEORY	: 70 CCA : 30								
Scheme	of marks:								
ii. S	Short answer type questions: Five questions Word limit 100 words).	rrying 1 marks each to be asked ten to be attempted carrying 6 marks each to be asked three to be attempted							
	liddle answer type questions: Five question Word limit 250 words).	s carrying 9 marks each to be set three to be attempted							
iv. L	,	s carrying 11 marks each to be set two to be attempted							
(,	sducers - Principle, construction and working of							
	Thermistor, LVDT, Electrical strain gauges and capacitive transducers.								
UNIT-1 20Hrs.	Measurement of non-electrical quantities - Strain, Displacement, temperature, Pressure and								
UN 20	Force.								
	Digital Instrumentation : Principle, bloc	ck diagram and working of Digital frequency counter,							
T-2 Hrs	digital multimeter, digital pH meter, digital conductivity meter and digital storage								
UNIT-2 20 Hrs	oscilloscope.								
3 rs	Analytical Instrumentation : Principle,	block diagram, description, working and applications							
UNIT-3 0 H rs	of UV-VIS spectrometer, IR spectrom	eter, Flame emission spectrometer and ICP - AES							
UN 20	spectrometer - Basic concepts of Gas an	d Liquid Chromatography.							
	Bio-Medical Instrumentation : Physiol	ogical transducers to measure blood pressure, body							
UNIT4 15 Hrs	temperature. Sources of Bio-electric potentials - resting potential, action potential, bio-								
UN 15	potential electrodes. Principle, block diagram and operation of ECG and EEG - recorders.								
10 /2	Computer Peripherals : Printers - Printer	er mechanism - Classification. Dot matrix, Ink jet and							
UNIT-5 15 Hrs	laser printers. Basic concepts of key boa	ard and mouse. Mass data storage - floppy disk -Hard							
UN 15	Disk - Optical disk (CD).								

GS	1. Dr. Rajendra Prasad, Electronic Measurements and Instrumentation, Khanna Publications.						
DIN	2. S. Ramambhadran, Electronic Measurements and Instrumentation Khanna Publications.						
READINGS	3. S.M. Dhir, Electronics and Instrumentation, Khanna Publishers. Khandpur						
_							
ILS							
SUGGESTED							
SU							

Paper-V: MSP-B03:CONDENSED MATTER PHYSICS – II

Course Outcomes

After completing the course the students will able to : -

- **CO -01-** Explicate response of band electrons to an external electric field and their scattering, and calculate currents in bands.
- **CO -02-** Develop a semi-classical description of electrical and thermal transport in metals using the Boltzmann approach, and explain different thermoelectric effects.
- **CO -O3-** Distinguish nanostructures from bulk materials and learn principle of different imagining techniques for nanostructures.
- **CO -04-** Calculate the electronic structure of nano-scale 1D, 0D solids in effective mass approximation, and use it to explain the electrical transport in these solids.
- **CO -05-** Treat the electron-electron interactions in Hartree and Hartree-Fock approximations using the variational principle and apply these to calculate electronic properties of simple metals.
- **CO -06-** Learn the concept of screening and calculate the screened potential using the Thomas-Fermi and Lindhard approaches.
- **CO -07-** Transform the Schrodinger equation for a many-particle system (bosons as well as fermions) to the second quantized form, and construct field operators for one- and two-body operators.
- **CO- 08-** Apply the second-quantized method to a degenerate homogenous electron gas for calculating the first-order ground-state energy.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01				~						
CO-02		~	\checkmark			~				
CO-03								~		
CO-04				~						
CO-05		~								
CO-06					✓			√		
CO-07	~									
CO-08						~				

M.Sc. in	PHYSICS	SECOND SEMESTER								
COURSE CODE:	MSP B03	COURSE TYPE : ECC/CB								
COURSE TITLE:	COURSE TITLE: CONDENSED MATTER PHYSICS – II									
CREDIT: 06 HOURS : 90										
THEORY: 06	THEORY: 06 THEORY: 90									
MARKS: 100 THEORY: 70	MARKS: 100 THEORY: 70 CCA: 30									
Scheme of mark	IS:									
ii. Short an		rrying 1 marks each to be asked ten to be attempted carrying 6 marks each to be asked three to be attempted								
iii. Middle a	-	ns carrying 9 marks each to be set three to be attempted								
•	wer type questions: three questions	carrying 11 marks each to be set two to be attempted (Word								
UNIT-1 20Hrs.	Disordered systems: Substitutional, positional and topographical disorder, short and long range order, glass transition, glass forming ability, nucleation and growth processes. Anderson model for random system and electron localization, mobility and									
UNIT-2 20 Hrs	with energy, variation of densit confinement in infinitely deep s	neory (qualitative idea), variation of density of states by of state and band gap with size of crystal. Electron square well, confinement in two and one dimensional acture , tunneling through potential barrier, quantum								
UNIT-3 20 H rs	Different methods of preparative precipitation method, effect of	ation of nanomaterials. Sol-gel and chemical co- temperature on the size of the particles. Bottom up: beam deposition, top down: ball milling. DC and RF								
UNIT4 15 Hrs	conditions for accurate determ fringes). Electrical conductivity bulk material, Boltzman transp	surface topography by multiple beam interferometry, nination of step height and film thicknesses (Fizeau of thin films, difference of behaviour of thin films from ort equation for a thin film (for diffuse scattering), ductivity for thin film. Enhancement of magnetic ag.								
UNIT-5 15 Hrs	tunnelling and atomic force mi	c ideas of the techniques of field emission, scanning croscopy, scanning electron microscopy, transmission action line broadening, small angle X-ray scattering and								

	1.Tolansky: Multiple beam interferometry							
	2. Heavens: Thin films 3.Chopra: Physics of thin films							
INGS	4. Quantum dot heterostructures: D. Bimerg, M. Grundmann and N.N. Ledenstov, John							
READINGS	Wiley & Sons, 1998							
	5. Nano particles and nano structured films – preparation, characterization and							
SUGGESTED	applications, Ed. J.H. Fendler, John Wiley & Sons, 1998.							
36E9	6. Physics of low dimensional semiconductors: John H. Davies, Cambridge Univ. Press,							
SUC	1997							
	7. Physics of semiconductor nano structures: K.P. Jain, Narosa, 1997							

M.Sc. Semester-II Paper-V: MSP-B04: HIGH ENERGY PHYSICS - II <u>Course Outcomes</u>

After completing the course the students will able to : -

CO-01-Realize the Weak interaction, Leptons fundamentals their decay.

CO-02-Understand the concept of Helicity, Higgs field and existence of Higgs Bosons.

CO-03-Understand of the relativistic kinematics and its importance in calculations at relativistic energies.

CO-04-Construct Analysis of the decay energy in various high energy reactions.

CO-05-Understand the interaction of charge particles with matter and will be able to calculate the dynamics of high energy particles.

CO-06-Learn the quantitative and qualitative analysis of Energy loss and Straggling mechanism.

CO-07-Understand radiations mechanism at relativistic velocities.

CO-08-Grasp details of particle accelerators for the creation of high energy particles will be provided.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01	~							~		
CO-02	~									
CO-03	~									
CO-04	✓									
CO-05						√				
CO-06	~									
CO-07								✓		
CO-08			\checkmark					\checkmark		

M.Sc. in	PHYSICS	SECOND SEMESTER							
COURSE	CODE: MSP B04	COURSE TYPE : ECC/CB							
COURSE	TITLE: HIGH ENERGY PHYSICS - I								
CREDIT:	06	HOURS : 90							
THEORY	: 06	THEORY: 90							
MARKS : THEORY	: 70 CCA : 30								
Scheme	of marks:								
ii. S									
	liddle answer type questions: Five question Word limit 250 words).	s carrying 9 marks each to be set three to be attempted							
iv. L		s carrying 11 marks each to be set two to be attempted							
	Moller scattering, trace theorems	and properties of gamma matrices, helicity							
UNIT-1 20Hrs.	representation at high energies., the electron propagator, the photon propagator.								
-2 'S	Structure of Hadrons: form factors, e-j	o scattering, inelastic e-p scattering, Bjorken scaling,							
UNIT-2 20 Hrs	Partons, gluons, deep inelastic scattering, evolution equations for parton densities.								
T-3 H rs	QCD: Electron positron annihilation	into hadrons, heavy qwuark production, three jet							
UNIT-3 20 H rs	events, QCD corrections, Perturbative Q	CD, Drell-Yan process							
	Weak Interactions: Parity violation, V-A	A form of weak interaction, Nuclear beta decay, muon							
UNIT4 15 Hrs	decay, pion decay, neutrino electron	scattering, neutrino quark scattering, weak neutral							
UN 15	currents, the Cabibo angle, weak mixing	g angles, CP invariance.							
S S	Gauge Symmetries: U(1) Local gauge in	variance and QED, Non-abelian gauge invariance and							
UNIT-5 15 Hrs	QCD, massive gauge bosons, spontaneo	us breakdown of symmetry, the Higgs mechanism.							

GS	1. Francis Halzen and Allan D. Martin, Quarks and Leptons: An Introductory Course in
DING	Modern Particle Physics, John Wiley and Sons
READINGS	2. B.R. Martin and G. Shaw, Particle Physics, 2nd edition, J. Wiley and Sons (1997).
	3. David Griffiths, Introduction to Elementary Particles
SUGGESTED	4. Byron Roe Particle Physics at the New Millennium
JGG	5. Donald Perkin, Introduction to high energy physics).
SI	

M. Sc. in PHYSICS THIRD SEMESTER (ODD SEMESTER)

FACULTY OF SCIENCE

Eligibility Criteria (Qualifying Exams)	Course Code	Course Type	Course (Paper/Subjects)	Credits	WeeK		Per P	EoSE Duration (Hrs.) Thy P	
	MSP 301	ССС	Solid State Physics	6	L 4	T 3	Р 0	3	Р 0
the Second examination number of	MSP 311/312	CCC	Lab Course A/Lab Course B	6	00	00	6	00	6
the xami	MSP 302	CCC	Nuclear and Particle Physics	6	4	3	0	3	0
•	MSP 303	CCC	Classical Electro Dynamics	6	4	3	0	3	0
ing in of any papers	MSP S02	OSC	Intellectual Property Rights	6	4	3	00	3	00
ing of pap	MSP C01	ECC/CB	Tribal Studies		4	3			
	MSP C02	ECC/CB	Microwave Electronics	6			00	3	00
After appearing semester irrespective of back/ arrear pap	MSP C03	ECC/CB	Nano Science	0			00	5	00
	MSP C04	ECC/CB	High Energy Physics - III						
After ap semester irrespect back/ arr	MINIMUM	CREDITS I	N INDIVIDUAL SUBJECT IS 6 AND IN	TOTAL=					
A1 Se irr ba	COMPLETE	SEMESTER	R IT WOULD BE 30	36					

Paper-I: MSP-301:Solid State Physics

Course Outcomes

- **CO -01-** Acquire knowledge about different experimental approaches in the study of Fermi surfaces in different materials.
- **CO -02-** know Semiconductor properties and carrier concentration, effect of temperature on mobility, electrical conductivity and Hall Effect in conductors and semiconductors.
- **CO -03-** Understand piezo, pyro and Ferro electricity, ferroelectric domains and hysteresis.
- **CO -04-** Understand basic theories of magnetic materials like ferromagnetism, ferrimagnetism, antiferromagnetism.
- **CO -05-** elaborate electron in potential wells, degeneracy state, density of states, thermal and electrical conductivity of metals, and thermoelectric power.
- **CO -06-** Acquire basic knowledge on (low temperature) superconductivity in type I and type II super conductors, and also different theoretical approaches to super conductivity (BCS).
- **CO -07-** Understanding of various phenomena related to super conductivity, such as the Meissner effect, flux quantization, Giæver- and Josephson tunnelling.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01	~									
CO-02	~		\checkmark							
CO-03	\checkmark									
CO-04	~									
CO-05								~		
CO-06	~				✓					
CO-07								\checkmark		

	M.Sc. in PHYSICS	THIRD SEMESTER							
COURSE	CODE: MSP 301 COURS	E TYPE : CCC							
COURSE TITLE: SOLID STATE PHYSICS									
CREDIT:	CREDIT: 06 HOURS: 90								
THEORY	THEORY: 06 PRACTICAL: 00 THEORY: 90 PRACTICAL: 00								
MARKS:	100								
THEORY	: 70 CCA : 30	PRACTICAL: 00							
Scheme	or marks:								
ii. S	hort answer type questions: Five questions	arrying 1 marks each to be asked ten to be attempted carrying 6 marks each to be asked three to be attempted							
-	Word limit 100 words). Iiddle answer type questions: Five question	as carrying 9 marks each to be set three to be attempted							
()	Word limit 250 words).								
	ong answer type questions: three question Nord limit 750 words).	s carrying 11 marks each to be set two to be attempted							
	Crystal Physics								
UNIT-1 20 Hrs.		le crystal structures - Crystal diffraction - Bragg's law							
UNIT-1 20 Hrs	- Reciprocal lattice (sc, bcc, fcc) - Lau equations - Atomic form factor - Types of crystal binding - Cohesive energy of ionic crystals - Inert gas crystals - Vander Waal, Metal crystals -								
ר 7	Hydrogen bonded crystals.								
2	Lattice dynamics								
UNIT-2 15 Hrs		atoms per primitive cell - First Brillouin zone - Group f lattice vibrations - Phonon momentum - Inelastic							
-TIV H	-	ory of lattice heat capacity - Einstein's model and							
ĥ	Debye's model of specific heat.								
	Theory of metals and semiconductors	s - Electronic heat capacity - Wiedmann-Franz law -							
UNIT-3 20 Hrs	8	nd semiconductors - Bloch theorem - Kronig-Penny							
UNI 20		rier concentration - Mobility - Impurity conductivity -							
	de Haas Van Alphen effect.								
	Magnetism								
-4- IS	-	ro magnetism - quantum theory of paramagnetism -							
UNIT-4 15Hrs	Rare earth ion - Hund's rule-Adiabatic demagnetization - Quantum theory of ferromagnetism - Curie point, ferromagnetic domains - Bloch Wall - Spin waves - Quantization - Magnons								
1	thermal excitation of magnons - Cur	ie temperature and susceptibility of ferrimagnets -							
	Theory of antiferromagnetism - Neel te	mperature.							
ю "	Super conductivity Effect of magnetic fields - Meissner	effect - Entropy and heat capacity - Energy gap -							
JNIT- 5 20Hrs		ype I and II superconductors - theoretical explanation							
UNIT- 5 20Hrs	London equation - Coherence length -	BCS Theory - superconducting Tunneling - Josephson							
	tunneling - DC and AC Josephson effect	5.							

	1. N.W. Aschroft and N.D. Mermin, Solid State Physics, Rhinehart and Winton, New York.
	2. J.S. Blakemore, 1974, Solid State Physics, 2nd Edition, W.B. Saunder, Philadelphia.
IGS	3. A.J. Dekker, Solid State Physics, Macmillan India, New Delhi.
ADIN	4. H.M. Rosenburg, 1993, The Solid State, 3rd Edition, Oxford University Press, Oxford.
SUGGESTED READINGS	5. S.O. Pillai, 1994, Problems and Solutions in Solid State Physics, New Age International, New Delhi.
IGGES	6. S.L. Altmann, Band Theory of Metals, Pergamon, Oxford.
SU	7. M.A. Wahab, 1999, Solid State Physics, Structure and Properties of Materials, Narosa, New Delhi.
	8. J.M. Ziman, 1971, Principles of the Theory of Solids, Cambridge University Press, London.

	M.Sc.	in PHYSIC	S	THI	RD SEMESTER					
COU	JRSE (CODE:	MSP 311	COURSE	TYPE : CCC					
COU	JRSE 1	TITLE: La	b Course A							
		CRE	DIT: 03	HOURS:	90					
TH	EORY:	00	PRACTICAL: 03	THEORY: 00	PRACTICAL: 100					
			Mark	xs	100					
THEORY: 00 PRACTICAL: 100										
	LUNII	00		(EXPERIMENT:60; V	IVA-VOCE:20 &					
		LAB CO	URSE A:	SESSIONAI	.:20)					
		1. To find the root of an Equation using Newton–Raphson method.								
		2. To	o find the root of an equation	using Bisection Method.	using Bisection Method.					
		3. To find the real roots of an equation using Simpson 1/3rd Method.								
		4. To find the real roots of an equation using Simpson 3/8th Method.								
¥		5. To find the root of an equation using second Method.								
BORATORY WORK		6. To find the root of an equation using Regala falsi Method								
JRY V	MSP 311	7. To find the root of an equation using Runga Kutta fourth order Method.								
RATC	MSP	8. To find the root of an equation using Jacobi method.								
ABO		9. To	o find the root of an equation	by Lu- Decomposition met	hod.					
L		10. To find the root of an equation by Newton forward difference Method.								

I	M.Sc. i	in PHY	SICS	THI	RD SEMESTER
COL	JRSE (CODE:	MSP 312	COURSE	TYPE : CCC
CO Ι	JRSE 1	TITLE:	Lab Course B		
		(CREDIT: 03	HOURS:	45
THI	EORY:	00	PRACTICAL: 02	THEORY: 00	PRACTICAL: 100
			Ma	rks	
THI	EORY:	00		PRACTICAL	.: 100
				(EXPERIMENT:60; V SESSIONAI	IVA-VOCE:20 &
		LAB	COURSE B:		
		1.	To construct and study T-Type	Flip Flop using NAND/NOR gat	e.
		2.	To Construct and Study RS Flip	Flop using NAND/NOR gate.	
		3.	To construct and study D-Type	Flip Flop using NAND/NOR gat	e.
		4.	To construct and study of 4 bit	Digital to Analog Converter (DA	C) using R-2R
			ladder method.		
		5.	To study various Flip-Flops usin	ng Digital IC trainer.	
RK		6.	Construction of full substractor		
BORATORY WORK		7.	Construction of half substracto	r using Ex-OR gate.	
RY	312				
ATO	MSP 312				
30R					
LAF					

Paper-II: MSP-302: NUCLEAR AND PARTICLE PHYSICS

Course Outcomes

After completing the course the students will able to : -

CO -01- Understand Nuclear Force And Nuclear Models.

- **CO -02-** Analyze the semi empirical mass formula and its applications using liquid drop model and shell model.
- **CO -03-** Understand the concept of Nuclear Decay Processes.
- **CO -04-** Interpret the Classification of nuclear reactions.
- **CO -05-** Understand the Classification of elementary Particles and their Quantum Numbers

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01	~									
CO-02			✓			~				
CO-03	~									
CO-04						\checkmark		✓		
CO-05	~									

M.Sc. in	PHYSICS	THIRD SEMESTER							
COURSE	CODE: MSP 302 COURSE TYPE :	CCC							
COURSE	COURSE TITLE: NUCLEAR AND PARTICLE PHYSICS								
CREDIT:	CREDIT: 06 HOURS: 90								
THEORY: 06 PRACTICAL: 00 THEORY: 90 PRACTICAL: 00									
MARKS: THEORY		PRACTICAL: 00							
Scheme	of marks:								
ii. S (V iii. M	ii. Short answer type questions: Five questions carrying 6 marks each to be asked three to be attempted (Word limit 100 words).iii. Middle answer type questions: Five questions carrying 9 marks each to be set three to be attempted								
iv. L	<i>N</i> ord limit 250 words). ong answer type questions: three questions <i>N</i> ord limit 750 words).	s carrying 11 marks each to be set two to be attempted							
UNIT-1 20 Hrs.	Nuclear stability - Mass parabolas - Boh	model - Semi-empirical mass formula of Weizsacker - nr-Wheeler theory of fission, Experimental evidence for c coupling - Magic numbers - Angular momenta and ive Model.							
UNIT-2 15 Hrs	_	r forces - Meson theory of nuclear forces - Yukawa - Low energy n-p scattering - Effective range theory,							
UNIT-3 20 Hrs		aws - Energetics of nuclear reactions, Q-equation and d nuclear reactions, compound nucleus - Scattering gner one level formula.							
UNIT-4 20Hrs	Allowed and forbidden decays - Decay	rie Plot - Fermi and Gamow - Teller selection rules - y rates, Comparative half lives - Theory of Neutrino - n capture, Gamma decay – Selection rule for gamma Nuclear isomerism.							
UNIT- 5 15 Hrs	Elementary particles, Types of interact Leptons - Symmetry and conservation CPT invariance - Classification of Had	fication of Elementary Particles, Quantum number of ctions between elementary particles - Hadrons and laws, strange particles, Elementary ideas of CP and drons, Quark model, Qunatum number for quarks, del, - Gell-mann-Okubo mass formula for octet and							

	1. Y.R. Waghmare, 1981, Introductory Nuclear Physics, Oxford-IBH, New Delhi.
IGS	2. Ghoshal, Atomic and Nuclear Physics, Volume 2.
SUGGESTED READINGS	3. J.M. Longo, 1971, Elementary Particles, McGraw-Hill, New York.
SD RE	4. R.D. Evans, 1955, Atomic Nucleus, McGraw-Hill, New York.
GESTH	5. B.L. Cohen, 1971, Concepts of Nuclear Physics, TMH, New Delhi.
suga	6. M.K. Pal, 1982, Theory of Nuclear Structure, Affl. East-West, Chennai.
	7. W.E. Burcham and M. Jobes, 1995, Nuclear and Particle Physics, Addison-Wesley, Tokyo.

Paper-III: MSP-303: Classical Electrodynamics

Course Outcomes

- **CO -01-** Acquire knowledge on general wave equation using Maxwell's equations and able to derive Laplace equations for electrostatic potential in Cartesian, spherical and cylindrical coordinates.
- **CO -02-** Analyze scalar and vector magnetic potentials and the propagation of EM waves in different media.
- **CO -03-** Understand the propagation of EM waves in bounded and unbounded media & Boundary conditions for E, D, B and H.
- **CO -04-** Understand poynting theorem and its physical significance.
- **CO -05-** Apply vector calculus to static electric-magnetic fields in different situations.
- **CO -06-** Formulate potential problems within electrostatics, magnetostatics and stationary current distributions in linear, isotropic media.
- **CO -07-** Interpret the deeper meaning of the Maxwellian field equations and account for their symmetry and transformation properties.
- **CO -08-** Define and derive expressions for the energy both for the electrostatic and magneto statics fields, interpret Poyntings theorem derived from Maxwell's equations.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01	~									
CO-02			\checkmark			✓				
CO-03	~									
CO-04	~									
CO-05						√				
CO-06								✓		
CO-07			~							
CO-08						✓			√	

.

I	M.Sc. in PHYSICS	THIRD SEMESTER					
COURSE CODE: MSP 303 COURSE TYPE : CCC							
COURSE	COURSE TITLE: CLASSICAL ELECTRODYNAMICS						
CREDIT:	06	HOURS: 90					
THEORY	: 06	THEORY: 90					
MARKS:	100 : 70 CCA : 30						
THEORY Scheme	: 70 CCA : 30 of marks:						
ii. S (V	Thort answer type questions: Five questions Word limit 100 words).	rrying 1 marks each to be asked ten to be attempted carrying 6 marks each to be asked three to be attempted as carrying 9 marks each to be set three to be attempted					
(V iv. L	Word limit 250 words).	s carrying 11 marks each to be set two to be attempted					
UNIT-1 15 Hrs.	Electrostatics: Electric field, Gauss Law, Differential form of Gaussian law. Another equation						
UNIT-2 20 Hrs	Boundary Value Problems in Electrostatics: Methods of Images, Point charge in the presence of a grounded conducting sphere, point charge in the presence of a charged insulated conducting sphere, General solution for the potential, conducting sphere wit hemispheres at a different potential.						
UNIT-3 20 Hrs	 Magnetostatics: Introduction and definition, Biot and Savart Law, the differential equations of magnetostatics and Ampere's law, magnetic induction for a current loop, Magnetic fields of a localized current distribution, Magnetic moment, Force and torque on and energy of a localized current distribution in an external induction, Boundary conditions on B and H, Uniformly magnetized sphere, magnetized sphere in an external fields, permanent magnets. 						
UNIT-4 20Hrs	Time varying fields, Maxwell's equation	ns, Poynting's Theorem, conservation laws: Energy in potentials, Gauge transformations, Lorentz gauge,					
UNIT-5 15 Hrs	covariant form, Lorentz condition in co magnetic fields, Lorentz force in cova	time in four vector form, Equation of continuity in variant form, Lorentz transformations of electric and ariant form, Maxwell's equations in covariant four ensor, transformation of four potentials and four etic fields.					

	1. J.D. Jackson: Classical Electrodynamics
ED	2. Panofsky & Phillip: Classical electrodynamics and magnetism
SUGGESTED READINGS	3. Griffith: Introduction to Electrodynamics
UGG XEAI	4. Landau & Lifshitz: Classical Theory of Electrodynamics
- SI	5. Landau & Lifshitz: Electrodynamics of continuous media

Paper-IV: MSP-S02: INTELLECTUAL PROPERTY RIGHTS

Course Outcomes

After the completion of the course, students will be able to understand:

CO-01:- The concept and development of all forms of I.P.R.

CO-02:- Distinguish and explain various forms of I.P.R

CO-03:- Identify criteria's to fit one's own intellectual work in particular forms of I.P.R

CO-04:- Apply statutory provisions to protect particular forms of I.P.R

CO-05:- Apply the concept and forms of I.P.R in research field

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01								~		
CO-02								~		
CO-03						√				
CO-04			~							
CO-05		~	~			\checkmark				

	M.Sc. in PHY	SICS	THIRD SEMESTER				
COURSE	CODE: MSPS	02	COURSE TYPE : OSC				
COURSE	COURSE TITLE: INTELLECTUAL PROPERTY RIGHTS						
CREDIT:	06		HOURS : 90				
THEORY:	06	Practical: 00	THEORY: 90	Practical: 00			
MARKS : THEORY:	100 70	CCA : 30					
Scheme o							
 i. Objective type questions: Twelve questions carrying 1 marks each to be asked ten to be attempted ii. Short answer type questions: Five questions carrying 6 marks each to be asked three to be attempted (Word limit 100 words). iii. Middle answer type questions: Five questions carrying 9 marks each to be set three to be attempted (Word limit 250 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word 							
	nit 750 words). Introduction,	Nature, Basic Concepts an	d International Conventions :	Nature and meaning of			
UNIT - 1 12 Hrs	Intellectual Property Justification for protection of Intellectual Property Rights, Types of Intellectual						
s 5	Law of Copyright						
UNIT - 2 24 Hrs	Definition, Subject matter of copyright, Ownership of Copyright, Term of Copyright, Rights of Owner, Assignments and Licenses, Infringement of Copyright, Remedies against infringement of copyright						
UNIT - 3 10 H rs	Law of Patents Meaning , Criteria for obtaining patents- Novelty, Utility, Non-obviousness, Non-patentable inventions, Procedure for Registration, Term of patent, Rights of Patentee, Compulsory licensing and Government use of patent, Infringement of patent, Remedies in case of Infringement						
UNIT - 4 24 Hrs	Law of Trademark Meaning of mark & Trademark, Categories of Trademark- Conventional and Non-conventional Marks , Concept of distinctiveness, Doctrine of honest concurrent use, Procedure of registration of trademarks and Term of Protection, Absolute and relative grounds for refusal of registration, Assignment and Licensing, Infringement and Passing off.						
UNIT - 5 20 Hrs	1. Geographic Authorized us	er	dication (GI) , Difference between GI and Tr Concept of original design, Term	_			

Paper-V: MSP-C01: Tribal Studies

Course Outcomes

After completing the course the students will able to : -

- **CO -01**-Describe the need and importance of Tribal Studies, since tribes constitute a significant portion of Indian Population.
- CO -O2-Identify major tribes of India, with their racial, lingual, and geographical classification.
- **CO -O3**-Enumerate various issues posing threat to the tribal existence, identity, development.
- **CO -04**-Critically describe various Laws, Policies, programmes and Constitutional provisions corresponding to tribal development in India.
- **CO -05**-Evaluate various welfare agencies and the programmes related to Scheduled Tribes in the fields of education, employment and social justice.
- **CO -06**-Create a deliberate interest in getting involved with the activities initiated for the improvement of the lives of tribals.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01								~		
CO-02			\checkmark			✓				
CO-03						√				
CO-04						√				
CO-05			~							~
CO-06		~			~					

Γ	M.Sc. in PHYSICS	THIRD SEMESTER					
COURSE	CODE: MSPC01	COURSE TYPE : ECC/CB					
	COURSE TITLE: TRIBAL STUDIES						
CREDIT:	06	HOURS : 90					
THEORY	: 06	THEORY: 90					
MARKS : THEORY							
	of marks:						
vi. S	vi. Short answer type questions: Five questions carrying 6 marks each to be asked three to be attempted (Word limit 100 words).						
	Word limit 250 words).	as carrying 9 marks each to be set three to be attempted					
		s carrying 11 marks each to be set two to be attempted					
	<i>Word</i> limit 750 words). Tribal Studies : Meaning, Nature, Scope, 1	Need & importance of tribalstudies. Meaning, Definition &					
	characteristics of Tribe, Caste & Race.						
UNIT - 1 12 Hrs							
01	Scheduled Tribe in India : Population Composition of tribal, classification of Indian Tribe – Racial,						
UNIT - 2 4 Hrs	Lingual, Geographical, Cultural.						
UNIT - 24 Hrs	Some Major Tribes in India : Santhal, Kha	asi, Munda, Bhils.					
- 2	Some Major Tribes in Central India : Gos Iliteracy :Poverty, Indebness, Unemp						
с - у	Degradation.	loyment, ingration & ExploitationEnvironmental &					
UNIT 0 H r	Problem of Health and sanitation :						
10 10		tion. Replacement & Rehabilitation of Tribal population.					
4 rs		al Welfare in post independenceperiod. Constitutional					
UNIT - 4 24 Hrs	provision & safe guard after independence,	, Legislation & Reservation Policy.					
	Tribal Development Programs for Schee	duled Tribes : Medical, Education, Economy, Employment					
JNIT - 5 20 Hrs	& Agriculture Evaluation of Programs						
UNIT - 5 20 Hrs		n India : Role of NGO's in tribal development, Role of evelopment. Tribal Welfare Administration.					
	1. Tribal Development In India (Orissa) by Dr. Taradutt					
TED	2. Books on Tribal studies by PK Bhow	mik					
SUGGESTED READINGS	3. Books on 'Tribal Studies' by W.G. Ar	cher					

DEPARTMENT OF PHYSICS, RAJEEV GANDHI GOVT. P.G. COLLEGE, AMBIKAPUR (CG), INDIA

Paper-V: MSP-C03: MICROWAVE ELECTRONICS

Course Outcomes

- CO -01- Analyze the wave propogation in TE, TM or TEM modes, in structures such as Rectangular waveguides
- CO -O2- Design various microwave components such as power dividers, hybrid junctions, microwaveSolid state dives, ferrite devices and microwave amplifier
- **CO- 03** Demonstrate various perceive operating principles of basic passive and active microwave devices.
- **CO -04**-.Perform analysis mathematically the operation and working of the various tubes
- **CO- 05** Demonstrate various microwave bench setup for measuring various parameters.
 - **CO -06** Understand the operation and working of the various tubes or sources for the transmission of the microwave frequencies.
- **CO -07** Understand and Analyze various parameters and characteristics of the various waveguide components.
- **CO -08** Understand and analyze various semiconductor devices.
- **CO -09** Apply Smith chart use for solution of transmission line problems and impedance matching.
- **CO -10** Analyze the difference between the conventional tubes and the microwave tubes for the transmission of the EM waves.
- **CO -11** Acquire knowledge about the measurements to be done at microwaves.
- **CO -12** Acquire complete knowledge about the applications of the microwaves for Radar Communications. Design and simulate waveguide components for various applications.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01		~				~				
CO-02			✓			√				
CO-03										~
CO-04						~				
CO-05						~				
CO-06								~		
CO-07	~									
CO-08	~									
CO-09		~				~		~		
CO-10		~	~			~				
CO-11	\checkmark									
CO-12	~	~	~							

COURSE CODE: MSP C02COURSE TYPE : ECC/CB								
COURSE TITLE: MICROWAVE ELECTRONICS								
CREDIT:	06	HOURS : 90						
THEORY	: 06	THEORY: 90						
MARKS : THEORY								
Scheme	of marks:							
ii. S								
	liddle answer type questions: Five questior Word limit 250 words).	ns carrying 9 marks each to be set three to be attempted						
iv. L	ong answer type questions: three question Word limit 750 words).	s carrying 11 marks each to be set two to be attempted						
	Waveguides and components: Field d	istribution in rectangular waveguide in TE and TM						
	modes, Phase velocity, Group veloci	ty, Characteristics impedance, wall current, Cavity						
UNIT-1 20Hrs.	resonators and their excitation techniq	ues, Scattering matrix for Microwave Tees and hybrid						
UN 20	junction directional coupler, Construc	tion and working of precision attenuator and phase						
	shifter.							
	CIRCUIT THEORY OF WAVE GUIDES: Power Transmission in Wave Guides, Equivalent							
	Voltages and Currents, Impedance Desc	cription of Wave Guide Elements and Circuits, Foster's						
UNIT-2 20Hrs	Reaction Theorem, One Port Circuit	s, N-Ports Circuits, Scattering Matrix Formulation,						
UN 20	Excitation and Coupling of Wave Gui	des, Dielectric Loaded Wave Guides, Surface Wave						
	Guides.							
	ANTENNAS: Familiarity with Different	Types of Antennas, Radiation Properties, Strip-Lines						
UNIT-3 20 H rs	and Microstrip Lines, Strip-Line C	haracteristics, Strip-Line Components, Microstrip						
UN 20	Antennas, Radiation Properties of Microstrip Antennas							
4- r	APPLICATIONS OF MICROWAVES: Applications of Microwave in RADAR, Satellite							
UNIT-4 15 Hrs	Communication, Mobile Communication, Microwave Heating							
	FERRITES Microwave Propagation in	Ferrites, Nano Ferrites, Synthesis of Nano Ferrites,						
UNIT-5 15 Hrs	Dielectric Properties of Ferrites, Ferrite	es as Microwave Absorbers.						

SUGGESTED READINGS	1. Foundations for Microwave Engineering: R.E. Collins, Mc. Graw Hills
	2. Solid State Electronic Devices: B. Streetman and S.K. Banerjee, PHI
	3. Microwave Devices and Circuits: L.S.Y. Liao, PHI
	4. Antenna Theory and Design: C.A. Balanis, John Wiley & Sons
	5. Basic Microwave Techniques and Laboratory Manual: M. L. Sisodia, G. S. Raghuvanshi. New
	Age International, Jan 1, 1987

Paper-V: MSP-C03: NANO SCIENCE

Course Outcomes

After completing the course the students will able to : -

CO-O1-Understand the basics of nanoscience.

CO-O2-Describe the various techniques to fabricate nanostructure.

CO-O3-Comprehend the principles and working of characterization tools for analyses of

Grasp the concepts of various physical properties of nanostructures.

- **CO -04** The ability to develop case studies of nanomaterials with a focus on fundamentals, fabrication, characterization, and applications.
- **CO -05** Gain experience in applying unique properties of nanomaterials to solve problems and challenges in our life.
- **CO -06** Understand the quantum nanostructures, such as quantum dots, nanowires and quantum wells

and their density of states.

C0-07- Gain the knowledge in dispersion relation of electron in solids.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01								~		
CO-02	\checkmark									
CO-03	~									
CO-04	~									
CO-05						√				
CO-06	~									
CO-07	~					✓				

Μ	I.Sc. in PHYSICS	THIRD SEMESTER				
COURSE CODE: MSPC03COURSE TYPE : ECC/CB						
COURSE TITLE: NANO SCIENCE						
CREDIT:	06	HOURS : 90				
THEORY	: 06	THEORY: 90				
MARKS : THEORY						
	of marks:					
ii. S	hort answer type questions: Five questions	arrying 1 marks each to be asked ten to be attempted carrying 6 marks each to be asked three to be attempted				
	Nord limit 100 words). Iiddle answer type questions: Five questior	is carrying 9 marks each to be set three to be attempted				
/)	Word limit 250 words).					
	ong answer type questions: three question Nord limit 750 words).	s carrying 11 marks each to be set two to be attempted				
UNIT-1 20Hrs.	Introduction to Nanoparticles					
UNIT-2 20Hrs	Nanocrystals					
UNIT-3 20 H rs	Characteristics of Nanomaterials Magnetism in particle of reduced size dimension - Variation of magnetism with size - Magnetic behavior of small particle - Diluted magnetic semiconductor (DMS) - Fe DME and its applications. Nanoparticle as chemical reagents - Specific heat of nanoparticle crystals - Melting point of Nanoparticle material - Nanolithography - Estimation of nanoparticle size using AFM.					
UNIT-4 15 Hrs	Nano Tubes New form of carbon - Types of nanotu Preparation and properties of nanotu material processing for nanotube - Lig	bes - Formation of nanotubes - Various techniques - ubes - Uses of nanotubes and applications - Nano ght and Nano technology - Nanoholes and photons - um electronic devices - Quantum information and				
UNIT-5 15 Hrs	Applications					
SUGGESTED READINGS		LOGY : FRONTIERSOF FUNDAMENTALS BY : M.S.				

DEPARTMENT OF PHYSICS, RAJEEV GANDHI GOVT. P.G. COLLEGE, AMBIKAPUR (CG), INDIA

Paper-V: MSP-C04: HIGH ENERGY PHYSICS - III

Course Outcomes

After completing the course the students will able to : -

CO-O1- Understand the complex properties and behaviour of high energy particles at the microscopic level.

CO-O2- Learn about the knowledge of different types of high energy particles.

- **CO-O3-** Understanding of spin parity concept & magic no. Related to shell.
- **CO-O4-** Learn about the classification of fundamental particles and their interactions according to the Standard Model quark structure of mesons and baryons.
- **CO-05-** Explain the experimental evidence for quarks, gluons, quark confinement, asymptotic freedom, sea quarks, the running coupling constant and colour charge

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01	\checkmark									
CO-02			\checkmark					✓		
CO-03	~									
CO-04								✓		
CO-05							√			

M.Sc. in PHYSICS THIRD SEMESTER							
COURSE	COURSE CODE: MSP CO4COURSE TYPE : ECC/CB						
COURSE	TITLE: HIGH ENERGY PHYSICS – III						
CREDIT:	06	HOURS : 90					
THEORY: 06 THEORY: 90							
	MARKS: 100 THEORY: 70 CCA: 30						
	: 70 CCA : 30						
	histing true quartient. Truelus quartients	www.ing.1.works.co.ch.to.ho.co.ko.d.to.n.to.ho.otto.works.d					
		arrying 1 marks each to be asked ten to be attempted carrying 6 marks each to be asked three to be attempted					
(Word limit 100 words).						
	liddle answer type questions: Five questior Word limit 250 words).	ns carrying 9 marks each to be set three to be attempted					
iv. L	ong answer type questions: three question	s carrying 11 marks each to be set two to be attempted					
C	Word limit 750 words). Local gauge invariance and Yang-Mil	ls fields, Lagrangian of the Spontaneous symmetry					
:-1 Irs.	breaking and the Higgs mechanism, The						
UNIT-1 20Hrs.	breaking and the mggs meenanism, m	wemberg salam model and beyond.					
	Unified models of weak and electromagnetic interactions, Standard Model, flavor group,						
2 rs	flavor-changing neutral currents. Weak isospin.						
UNIT-2 20Hrs							
3 rs	Quark and lepton mixing. CP violation.	Neutrino oscillations.					
UNIT-3 20 H rs							
-							
T-4 Hrs		chanism, rare processes, neutrino masses, seesaw					
UNI' 15 I	mechanism						
	QCD confinement and chiral symmetry	breaking, instantons, strong CP problem.					
UNIT-5 15 Hrs							
UNI 15							
	1. Francis Halzen and Allan D. Marti	n, Quarks and Leptons: An Introductory Course in					
	Modern Particle Physics, John Wiley and Sons						
NGS	2. B.R. Martin and G. Shaw, Particle Phy	sics, 2nd edition, J. Wiley and Sons (1997).					
GES	3. Particle Data Group, The Review of P	article Physics,					
SUGGESTED READINGS	4. David Griffiths, Introduction to Elemo	entary Particles					
	5. Donald Perkin, Introduction to high e	energy physics.					
	or Domara i erinin, incroauction to ingh energy physics.						

M. Sc. in PHYSICS FOURTH SEMESTER (EVEN SEMESTER)

FACULTY OF SCIENCE

Eligibility Criteria (Qualifying	Course Course Code Type		Course (Paper/Subjects)	Credits	Contact Hours Per WeeK			EoSE Duration (Hrs.)	
Exams)					L	Т	Р	Thy	Р
examination papers	MSP 401	ссс	Materials Science and Laser Physics	6	4	3	0	3	0
exam	MSP 411/412	CCC	Lab Course A/ Lab Course B	6	00	00	6	00	6
semester examir ck/ arrear papers	MSP 402	CCC	Spectroscopy	6	4	3	0	3	0
l sem ack/a	MSP 403	CCC	Statistical Physics	6	4	3	0	3	0
Third er of ba	MSP 421	SSC/PRJ	Dissertation	6	00	00	9	0	4
n the numbe	MSP D01	ECC/CB	Energy Physics			2	00		00
ing in of any n	MSP D02	ECC/CB	Satellite Communication and Remote Sensing	C C					
After appearing in the Third ser irrespective of any number of back/	MSP D03	ECC/CB Crystal Growth & Thin film Physics		6	4	3	00	3	00
	MSP D04	ECC/CB	Renormalization and Supersymmetry						
Ai	MINIMUM (CREDITS IN INC	DIVIDUAL SUBJECT IS 6 AND IN COMPLETE SEMESTER IT WOULD BE 30	TOTAL= 36					

Paper-I: MSP-401:MATERIAL SCIENCE AND LASER PHYSICS

Course Outcomes

- **CO -01-** Analyze the Structure of materials at different levels, basic concepts of crystalline materials like unit cell, FCC, BCC, HCP, APF (Atomic Packing Factor), Co-ordination Number etc.
- **CO -02-** know the Mechanical response of Materials under applied load such as elastic response, stress-strain curve, viscoelasticity, Plastic deformation.
- **CO -03-** understand and explain Corrosion and degradation of materials and corrosion inhibition
- **CO -04-** Understand concept of mechanical behavior of materials and calculations of same using appropriate equations
- **CO -05-** Explain the concept of phase & phase diagram & understand the basic terminologies associated with metallurgy. Construction and identification of phase diagrams and reactions
- **CO -06-** Explain features, classification, applications of newer class materials like smart materials, piezoelectric materials, biomaterials, composite materials etc.
- **CO -07-** Compare among different of crystal imperfections.
- **CO -08-** Gain knowledge on laser rate équations for Two, Three, Four-level laser systems.
- **CO -09-** Understand Einstein relations for émission and absorption of radiation.
- **CO -10-** Gain knowledge on classification of laser systems.
- **CO -11-** Gain knowledge on application of various laser systems

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01	✓							√		
CO-02	~		✓							
CO-03	~									
CO-04	~									
CO-05						~				
CO-06	~									
CO-07						~				
CO-08	~									
C0-09	~							✓	~	
CO-10	√									
CO-11	✓									

]	M.Sc. in PHYSICS	FOURTH SEMESTER				
COURSE	CODE: MSP 401 COURS	E TYPE : CCC				
COURSE TITLE: MATERIAL SCIENCE AND LASER PHYSICS						
CREDIT: 06 HOURS: 90						
THEORY: 06 PRACTICAL: 00 THEORY: 90 PRACTICAL: 00						
MARKS:	100					
THEORY		PRACTICAL: 50				
Scheme	of marks:					
ii. S		arrying 1 marks each to be asked ten to be attempted carrying 6 marks each to be asked three to be attempted				
iii. M	liddle answer type questions: Five question	as carrying 9 marks each to be set three to be attempted				
	Nord limit 250 words).	a comming 11 months each to be get true to be attempted				
	Nord limit 750 words).	s carrying 11 marks each to be set two to be attempted				
UNIT-1 20 Hrs.	Phase Diagram : Phase Diagram - Basic principle - Simpl Solution - Interstitial and substitutional	e binary systems - Solid solutions - Application, Solid l solid solutions - Hume -Rothery electron al phases - Intermetallic compounds. Elementary nd fracture.				
UNIT-2 15 Hrs	DefectsPoint defects - Schottky and Frenkel defects - number of defects as a function of temperature- Diffusion in metals - Diffusion and ionic conductivity in inonic crystals.Dislocations - Edge and screw dislocations - Burgers vector - Plastic deformation, Effect ofgrain size on dislocation motion - Effect of solute atoms on dislocation motion.					
UNIT-3 20 Hrs	Optical Properties, Dielectric Properties and Ferro Electrics -Color centers - Photo conductivity - electronic transitions in photo conductors - Trap,Capture, recombination centers - General mechanism - Luminescence - Excitation andemission - Decay mechanisms.Internal electric field in a dielectric - Clausius - Mossotti and Lorentz - Lorenz equations .					
UNIT-4 15Hrs	elasticity - An elastic deformation - Rela Polymers - Polymerization mechanism	Atomic model of elastic behaviour - rubber like				
UNIT- 5 20Hrs	Laser pumping Rate equations - Three and modes of resonator - Oscillation - T	ssibility of amplification - Population inversion - level and four level system - Optical resonator - Types 'hreshold condition. - Conditions for oscillation to occur - Frequency of				

INGS	1. Lawrence H. Vlack, 1998, Elements of Materials Science and Engineering, 6th Edition, Second ISE reprint, Addison-Wesley.
SUGGESTED READINGS	2. H. Iabch and H. Luth, 2001, Solid State Physics, An introduction to principles of Material Science, 2_{nd} Edition, Springer.
GESTI	3. B.B. Laud, 1991, Lasers and Non linear optics, Wiley Eastern Ltd.
SUG	4. Verdayan J.J. 1993, Laser Electronics, Prentice-Hall India, New Delhi.

M	I.Sc. ii	n PHYSICS		FOURTH SEMESTER					
COU	JRSE (CODE:	MSP 411	COURSE	TYPE : CCC				
COU	COURSE TITLE: Lab Course A								
		CRE	DIT: 03	HOURS:	90				
TH	THEORY: 00 PRACTICAL: 03			THEORY: 00	PRACTICAL: 100				
			Marks	5	100				
тн	EORY:	00		PRACTICAL	: 100				
				(EXPERIMENT:60; VI	VA-VOCE:20 &				
		LAB COU	URSE A:	SESSIONAL	.:20)				
		1. C+-	⁺ program for aitken's delta s	quire method.					
		2. C ⁺⁻	* program for steffensed met	hod.					
		3. C ⁺⁺ program for striling formula.							
		4. C ⁺⁺ program for iteration method.							
KΚ		5. C ⁺⁺ program for cholesky method							
BORATORY WORK		6. C ⁺⁺ program for ramberg's method							
FORY	MSP 411	7. C ⁺⁺ program for successive approximation DAC method							
DRAT	MS	8. C+-	+ program for Gaussian integr	ration method.					
LAB(9. C ⁺⁺ program for global illumination formula.							
		10. C+	+ program for libemann meth	nod.					

M	I.Sc. iı	n PHYS	ICS					FOUR	RTH SEMI	ESTER	
COU	JRSE (CODE:		MSP 412			CO	URSE	ТҮРЕ :	CCC	
COU	JRSE 1	TITLE:	Lab Co	ourse B							
		C	REDIT:	03			НО	URS:	90		
TH	EORY:	00	PR	ACTICAL:	03	THEOR	Y: 00		PRACTIO	CAL:	
					Ma	arks			100		
тні	EORY:	00					PRAC	FICAL :	: 100		
		00				(ЕХ	EXPERIMENT:		VA-VOCE:	20 &	
		LAB (COURS	<u>E B:</u>			01001		,		
		1.	To stu	dy workin	g of OP- AM	P as a squar	e wave gene	erator	using.		
		2.	To stu	dy the wo	rking of OP-	AMP as a inv	verting amp	lifier.			
		3.	To study the working of OP-AMP as a non-inverting amplifier.								
		4.	. To study the working of OP-AMP as subtractor.								
		5.	5. To study the working of OP-AMP as adder amplifier.								
		6.	To stu	dy the wo	rking of OP-	AMP as a Int	tegrator.				
BORATORY WORK		7.	To stu	dy the wo	rking of OP-	AMP as a dif	ferentiator.				
ΛM	12	8.	To stu	dy the cha	racteristics	of Thyraton					
TOR	MSP 412										
DRA'	W										
AB(

Paper-II: MSP-402: Spectroscopy

Course Outcomes

After completing the course the students will able to : -

- **CO -01-** Recognize spectroscopy in microwave, Rotational spectra of rigid diatomic molecules, selection rules, interaction of spectral lines
- **CO -02-**Study of Vibrating diatomic molecule, energy levels of a diatomic molecule, simple harmonic and anharmonic oscillator, Scattering of light and Raman Spectrum. rotational and vibrational Raman Spectra
- **CO -03-**Make Students aware of the fine structure of ESR absorption, Hyperfine structure, Double resonance in ESR, Techniques of ESR spectroscopy
- **CO -04-**Understand Principles and Applications of Mossbauer spectroscopy
- **CO -05-**Understand concepts of Nuclear and Radiation Chemistry. Applications of Radioisotopes.
- **CO -06-**Understand Micro-wave, IR and RAMAN spectroscopy and interpret the data from these measurements.
- **CO -07-**Understand the basic principles of NMR and ESR spectroscopy and its applications

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01	✓					✓				
CO-02			\checkmark				✓	~		
CO-03								~		
CO-04								~		
CO-05	✓									
CO-06	~				~					
CO-07	~									

M.Sc. in	PHYSICS	FOURTH SEMESTER						
COURSE	CODE: MSP 402	COURSE TYPE : CCC						
COURSE	COURSE TITLE: SPECTROSCOPY							
CREDIT:	06	HOURS: 90						
THEORY	: 06 PRACTICAL: 00	THEORY: 90 PRACTICAL: 00						
MARKS:	100							
THEORY	: 70 CCA : 30	PRACTICAL: 00						
Scheme	of marks:							
i. O	hiective type questions. Twelve questions ca	arrying 1 marks each to be asked ten to be attempted						
		carrying 6 marks each to be asked three to be attempted						
	Word limit 100 words).							
	liddle answer type questions: Five questior Word limit 250 words).	as carrying 9 marks each to be set three to be attempted						
-	-	s carrying 11 marks each to be set two to be attempted						
	Word limit 750 words).							
s 1	Microwave spectroscopy							
UNIT-1 18 Hrs.		nolecules - Polyatomic molecules - Study of linear quadruple moment of linear molecules, Molecular						
UN 18	structure determination - Stark effect - inversion spectrum of ammonia.							
18	Infrared spectroscopy							
		nd simple ployatomic molecules - Harmonic Oscillator						
T-2 Hrs		ibrators - Normal modes of vibration of Polyatomic						
UNIT-2 Hrs	spectroscopy.	- Applications of infrared spectroscopy, Reflectance						
	Raman Spectroscopy							
I-3 Hrs	1 10	n Scattering - Raman effect and molecular structure -						
UNIT-3 18 Hrs	Raman effect and crystal structure - Raman effect in relation to inorganic, organic and							
1 1		niques - Coherent anti-Stokes Raman Spectroscopy.						
	NMR and NQR Techniques	dy state solution of Plack equations. Theory of						
JNIT-4 18Hrs	Theory of NMR - Bloch equations - Steady state solution of Bloch equations - Theory of chemical shifts, Applications of NMR to quantitative measurement, Quadruple Hamiltonia							
UNIT-4 18Hrs		els for axial and non-axial symmetry - Experimental						
-	techniques and applications.							
	ESR and Mossbauer Spectroscopy							
- 5 Irs	-	- Nuclear interaction and hyperfine structure -						
UNIT- 5 18Hrs		pectrographs - Applications of ESR method. - Experimental methods - Massbauer spectrometer -						
		rfine interactions - Electric quadruple interactions.						

	1. C.N. Banwell and E.M. McCash, 1994, Fundamentals of Molecular Spectroscopy, 4th Edition, Tata McGraw-Hill Publications, New Delhi.
GS	2. G. Aruldas, 2001, Molecular Structure and Spectorscopy, Prentice - Hall of India Pvt.Ltd., New Delhi.
SUGGESTED READINGS	3. D.N. Satyanarayana, 2004, Vibrational Spectroscopy and Applications, New Age International Publications, New Delhi.
TED	4. Atta Ur Rahman, 1986, Nuclear Magnetic Resonance, Spinger Verlag, New York.
GGES	5. Towne and Schawlow, 1995, Micorwave Spectroscopy, McGraw-Hill,
SU	6. Raymond Chang, 1980, Basic Principles of Spectroscopy, Mc Graw-Hill, Kogakusha, Tokyo.
	7. D.A. Lang, Raman Spectroscopy, Mc Graw-Hill International, N.Y.

Paper-III: MSP-403: Statistical Physics

Course Outcomes

After completing the course the students will able to : -

- **CO -01-** Explain the fundamentals of statistical physics and thermodynamics as logical consequences of the postulates
- **CO -02-** Gain knowledge about classical and quantum statistical mechanics, including Boltzmann, Fermi-Dirac, and Bose-Einstein statistics.
- **CO -03-** Apply the formalism of statistical mechanics and probability theory to derive relations between thermo dynamical quantities.
- **CO -04-** Understand and explain the importance of Phase transition of first and second order, Landau theory of phase transition, Ising model, Brownian motion, Langevin theory, Fokker- Planck equation. Weiss theory of ferromagnetism
- **CO -05-** broad understanding of Statistical Mechanics, and show a critical awareness of the significance and importance of the topics, methods and techniques.
- **CO -06-** Understand the physical statistics and its relation to information theory and able to Solve statistical mechanics problems for simple non-interacting systems.
- **CO -07-** Understand the phase transitions and universality in second order phase transitions.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01	~					~	~			
CO-02	\checkmark		\checkmark							
CO-03		~				~				
CO-04	\checkmark									
CO-05	~									
CO-06	~				✓					
CO-07	~									

formula, Bose Einstein condensation, quantization of harmonic oscillator and creation and annihilation of phonon operators. Theory of Metals : Fermi-Dirac distribution function, density of states, temperature	M.Sc. in	PHYSICS	FOURTH SEMESTER						
CREDIT: 06 HOURS: 90 THEORY: 06 THEORY: 90 MARKS: 100 THEORY: 90 MARKS: 100 THEORY: 70 CCA : 30 Scheme of marks: . . . i. Objective type questions: Twelve questions carrying 1 marks each to be asked three to be attempted (Word limit 100 words). . iii. Middle answer type questions: Five questions carrying 9 marks each to be set three to be attempted (Word limit 750 words). . Iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). . Basic Principles, Canonical and Grand Canonical ensembles : Concept of statistica distribution, phase space, Liouville's theorem, systems and ensemble, entropy in statistica mechanics Connection between thermodynamic and statistical quantities, micro canonical ensemble, specific heat and entropy of a perfect gas using micro-canonical ensemble. Canonical ensemble, thermodynamic functions for the canonical ensemble, calculation o means values, grand canonical ensemble, thermodynamic functions and properties, partition function for an ideal gas and calculation of thermodynamic quantities, Gibbs Paradox, determination o translational, rotational and vibration contributions to the partition function of an ideal gas. THON Identical particles and symmetry requirement, difficulties with MaxwellBoltzmann statistics quantum distribution functions, Bose Einstein and Fermi-Dirac statis	COURSE CODE: MSP 403 COURSE TYPE :								
THEORY: 06 THEORY: 90 MARKS: 100 THEORY: 70 CCA : 30 Scheme of marks: i. Objective type questions: Twelve questions carrying 1 marks each to be asked ten to be attempted (Word limit 200 words). iii. iii. Middle answer type questions: Five questions carrying 6 marks each to be set three to be attempted (Word limit 250 words). iv. Long answer type questions: three questions carrying 9 marks each to be set three to be attempted (Word limit 250 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 250 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 250 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 250 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 250 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 250 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 250 words). iv. East Principles, Canonical and Grand Canonical ensembles: Concept of statistica mechanics Connection between thermodynamic and statistical quantities, micro canonical ensemble.	COURSE TITLE: STATISTICAL PHYSICS								
MARKS: 100 THEORY: 70 CCA : 30 Scheme of marks: Objective type questions: Twelve questions carrying 1 marks each to be asked three to be attempted (Word limit 100 words). Short answer type questions: Five questions carrying 9 marks each to be set three to be attempted (Word limit 250 words). Long answer type questions: three questions carrying 11 marks each to be set three to be attempted (Word limit 250 words). Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (attribution, phase space, Liouville's theorem, systems and ensemble, entropy in statistica mechanics Connection between thermodynamic and statistical quantities, micro canonical ensemble.	CREDIT:	06	HOURS: 90						
THEORY:70CCA : 30Scheme of marks:i.Objective type questions: Twelve questions carrying 1 marks each to be asked three to be attempted (Word limit 100 words).iii.Middle answer type questions: Five questions carrying 9 marks each to be set three to be attempted (Word limit 250 words).iv.Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 250 words).iv.Long answer type questions: three questions carrying 11 marks each to be set two to be attempted 	THEORY	: 06	THEORY: 90						
Scheme of marks: i. Objective type questions: Twelve questions carrying 1 marks each to be asked ten to be attempted (Word limit 100 words). iii. Middle answer type questions: Five questions carrying 9 marks each to be asked three to be attempted (Word limit 250 words). iv. Long answer type questions: three questions carrying 11 marks each to be set three to be attempted (Word limit 250 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). Basic Principles, Canonical and Grand Canonical ensembles : Concept of statistica distribution, phase space, Liouville's theorem, systems and ensemble, entropy in statistica mechanics Connection between thermodynamic and statistical quantities, micro canonical ensemble, specific heat and entropy of a perfect gas using micro-canonical ensemble. Canonical ensemble, thermodynamic functions for the canonical ensemble, calculation o means values, grand canonical ensemble, thermodynamic functions for the grand canonical ensemble. Partition functions and Statistics: Partition functions and properties, partition function of an ideal gas and calculation of thermodynamic quantities, Gibbs Paradox, determination o translational, rotational and vibration contributions to the partition function of an idea diatomic gas. Partition functions and Statistics: Partition functions to the partition function of an idea diatomic gas. Identical particles and symmetry requirement, difficulties with MaxwellBoltzmann statistics quantum distribution functions, Bose Einstein and Fermi-Dirac statistics and Planck's formula, Bose Einstein									
ii. Short answer type questions: Five questions carrying 6 marks each to be asked three to be attempted (Word limit 100 words).iii. Midle answer type questions: Five questions carrying 9 marks each to be set three to be attempted (Word limit 250 words).iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words).iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words).iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words).iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words).iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words).iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words).iv. Vord limit 750 words).Basic Principles, Canonical and Grand Canonical ensembles : Concept of statistical distribution, phase space, Liouville's theorem, systems and ensemble, entropy in statistical mechanics Connection between thermodynamic and statistical quantities, micro canonical ensemble, specific heat and entropy of a perfect gas using micro-canonical ensemble.canonical ensemble, thermodynamic functions for the canonical ensemble, calculation o means values, grand canonical ensemble, thermodynamic functions and properties, partition function for an ideal gas and calculation of thermodynamic quantities, Gibbs Paradox, determination o translational, rotational and vibration contributions to the partition function of an ideal diatomic gas. Specific heat of a diatomic gas.thentical particles and symmetry r									
FINDdistribution, phase space, Liouville's theorem, systems and ensemble, entropy in statistical mechanics Connection between thermodynamic and statistical quantities, micro canonical ensemble, specific heat and entropy of a perfect gas using micro-canonical ensemble.Canonical ensemble, thermodynamic functions for the canonical ensemble, calculation o means values, grand canonical ensemble, thermodynamic functions for the grand canonical ensemble.OT ELNDPartition functions and Statistics: Partition functions and properties, partition function for an ideal gas and calculation of thermodynamic quantities, Gibbs Paradox, determination o translational, rotational and vibration contributions to the partition function of an ideal diatomic gas. Specific heat of a diatomic gas.FEND Identical particles and symmetry requirement, difficulties with MaxwellBoltzmann statistics quantum distribution functions, Bose Einstein and Fermi-Dirac statistics and Planck's formula, Bose Einstein condensation, quantization of harmonic oscillator and creation and annihilation of phonon operators.Y Theory of Metals : Fermi-Dirac distribution function, density of states, temperature	ii. S (V iii. M (V iv. Lo	hort answer type questions: Five questions Word limit 100 words). iddle answer type questions: Five question Word limit 250 words). ong answer type questions: three question Word limit 750 words).	carrying 6 marks each to be asked three to be attempted as carrying 9 marks each to be set three to be attempted s carrying 11 marks each to be set two to be attempted						
LinMathematical and antropy of a perfect gas using micro-canonical ensemble.StructCanonical ensemble, thermodynamic functions for the canonical ensemble, calculation o means values, grand canonical ensemble, thermodynamic functions for the grand canonical ensemble.OCStructPartition functions and Statistics: Partition functions and properties, partition function for an ideal gas and calculation of thermodynamic quantities, Gibbs Paradox, determination o translational, rotational and vibration contributions to the partition function of an ideal diatomic gas. Specific heat of a diatomic gas.TermonIdentical particles and symmetry requirement, difficulties with MaxwellBoltzmann statistics quantum distribution functions, Bose Einstein and Fermi-Dirac statistics and Planck's formula, Bose Einstein condensation, quantization of harmonic oscillator and creation and annihilation of phonon operators.Theory of Metals : Fermi-Dirac distribution function, density of states, temperature		-	-						
 ensemble, specific heat and entropy of a perfect gas using micro-canonical ensemble. Canonical ensemble, thermodynamic functions for the canonical ensemble, calculation o means values, grand canonical ensemble, thermodynamic functions for the grand canonical ensemble. Partition functions and Statistics: Partition functions and properties, partition function for an ideal gas and calculation of thermodynamic quantities, Gibbs Paradox, determination o translational, rotational and vibration contributions to the partition function of an idea diatomic gas. Specific heat of a diatomic gas. Identical particles and symmetry requirement, difficulties with MaxwellBoltzmann statistics quantum distribution functions, Bose Einstein and Fermi-Dirac statistics and Planck's formula, Bose Einstein condensation, quantization of harmonic oscillator and creation and annihilation of phonon operators. 	IT-1 Hrs								
Canonical ensemble, thermodynamic functions for the canonical ensemble, calculation or means values, grand canonical ensemble, thermodynamic functions for the grand canonical ensemble.OC E-LNDPartition functions and Statistics: Partition functions and properties, partition function for an ideal gas and calculation of thermodynamic quantities, Gibbs Paradox, determination or translational, rotational and vibration contributions to the partition function of an ideal diatomic gas. Specific heat of a diatomic gas.THONIdentical particles and symmetry requirement, difficulties with MaxwellBoltzmann statistics quantum distribution functions, Bose Einstein and Fermi-Dirac statistics and Planck's formula, Bose Einstein condensation, quantization of harmonic oscillator and creation and annihilation of phonon operators.Theory of Metals : Fermi-Dirac distribution function, density of states, temperature	UN 20]								
Studymeans values, grand canonical ensemble, thermodynamic functions for the grand canonical ensemble, ensemble.07Summer StudyPartition functions and Statistics: Partition functions and properties, partition function for an ideal gas and calculation of thermodynamic quantities, Gibbs Paradox, determination of translational, rotational and vibration contributions to the partition function of an ideal 									
No. 17ensemble.Partition functions and Statistics: Partition functions and properties, partition function for an ideal gas and calculation of thermodynamic quantities, Gibbs Paradox, determination of translational, rotational and vibration contributions to the partition function of an ideal diatomic gas. Specific heat of a diatomic gas.Identical particles and symmetry requirement, difficulties with MaxwellBoltzmann statistics quantum distribution functions, Bose Einstein and Fermi-Dirac statistics and Planck's formula, Bose Einstein condensation, quantization of harmonic oscillator and creation and annihilation of phonon operators.Image: Provide the state of th	-2 rs								
 Partition functions and Statistics: Partition functions and properties, partition function for an ideal gas and calculation of thermodynamic quantities, Gibbs Paradox, determination of translational, rotational and vibration contributions to the partition function of an ideal diatomic gas. Specific heat of a diatomic gas. Identical particles and symmetry requirement, difficulties with MaxwellBoltzmann statistics quantum distribution functions, Bose Einstein and Fermi-Dirac statistics and Planck's formula, Bose Einstein condensation, quantization of harmonic oscillator and creation and annihilation of phonon operators. Theory of Metals : Fermi-Dirac distribution function, density of states, temperature 	NIT 5 H								
SETan ideal gas and calculation of thermodynamic quantities, Gibbs Paradox, determination of translational, rotational and vibration contributions to the partition function of an ideal diatomic gas. Specific heat of a diatomic gas.FUNDIdentical particles and symmetry requirement, difficulties with MaxwellBoltzmann statistics quantum distribution functions, Bose Einstein and Fermi-Dirac statistics and Planck's formula, Bose Einstein condensation, quantization of harmonic oscillator and creation and annihilation of phonon operators.FundTheory of Metals : Fermi-Dirac distribution function, density of states, temperature	U 1								
FinalIn ration gas and careatation of inermodynamic quantities, onloss Fundador, determination of translational, rotational and vibration contributions to the partition function of an idea diatomic gas. Specific heat of a diatomic gas.Identical particles and symmetry requirement, difficulties with MaxwellBoltzmann statistics quantum distribution functions, Bose Einstein and Fermi-Dirac statistics and Planck's 	0								
Image: Provide the section of the partition function of the partition function of an ideal diatomic gas. Specific heat of a diatomic gas.Image: Provide the section of the partition function of	C S								
Identical particles and symmetry requirement, difficulties with MaxwellBoltzmann statisticsquantum distribution functions, Bose Einstein and Fermi-Dirac statistics and Planck'sformula, Bose Einstein condensation, quantization of harmonic oscillator and creation and annihilation of phonon operators.Theory of Metals : Fermi-Dirac distribution function, density of states, temperature	HIT.		-						
ProvideProvideProvidequantum distribution functions, Bose Einstein and Fermi-Dirac statistics and Planck's formula, Bose Einstein condensation, quantization of harmonic oscillator and creation and annihilation of phonon operators. Provide Theory of Metals : Fermi-Dirac distribution function, density of states, temperature	N	diatomic gas. Specific heat of a diatomic gas.							
formula, Bose Einstein condensation, quantization of harmonic oscillator and creation and annihilation of phonon operators. Theory of Metals : Fermi-Dirac distribution function, density of states, temperature		Identical particles and symmetry requi	rement, difficulties with MaxwellBoltzmann statistics,						
annihilation of phonon operators. Theory of Metals : Fermi-Dirac distribution function, density of states, temperature	F-4 Irs	quantum distribution functions, Bose Einstein and Fermi-Dirac statistics and Planck's							
annihilation of phonon operators. Theory of Metals : Fermi-Dirac distribution function, density of states, temperature	JNI 20H	formula, Bose Einstein condensation, quantization of harmonic oscillator and creation and							
	-	annihilation of phonon operators.							
dependence of Fermi energy, specific heat, use of Fermi Dirac statistics in the calculation o	5 %	Theory of Metals : Fermi-Dirac dis	tribution function, density of states, temperature						
S S I thermal conductivity and electrical conduction band	IT- Hrs	dependence of Fermi energy, specific heat, use of Fermi Dirac statistics in the calculation of							
	UN) 15	thermal conductivity and electrical con	duction band.						

	1. Huag : Statistical Mechanics
LED	2. Reif : Fundamentals of Statistical and Thermodynamical Physics.
SUGGESTED EADINGS	3. Rice : Statistical mechanics and Thermal Physics.
ngo	4. Kittle : Elementray statistical mechanics.
S REA	

Paper-IV: MSP-412: DISSERTATION

Course Outcomes

Upon successful completion, students will have the knowledge and skills to:

- **CO-01:** gain in-depth knowledge and use adequate methods in the major subject/field of study.
- **CO-02:** create, analyze and critically evaluate different technical/research solutions
- **CO-03:** clearly present and discuss the conclusions as well as the knowledge and arguments that form the basis for these findings
- **CO-04:** identify the issues that must be addressed within the framework of the specific dissertation in order to take into consideration.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01	~			~		\checkmark				✓
CO-02			✓			√	√			~
CO-03	~						✓			
CO-04		~			~	\checkmark				

DEPARTMENT OF PHYSICS, RAJEEV GANDHI GOVT. P.G. COLLEGE, AMBIKAPUR (CG), INDIA

M.Sc. in PHYSICS

COURSE CODE: MSM 421

COURSE TITLE: DISSERTATION

CRE	DIT:6		HOURS: 135		
THEORY: 0	PRACTICAL: 6	THEORY: 0	PRACTICAL:135		
		MARKS: 100			
THE	DRY: 0		PRACTICAL:100		
(Course Report Submission:50 and Viva Voce:50)					
OBIECTIVE: The ma	in objective of the dis	sertation is to enable	the students to learn on their own as		

OBJECTIVE: The main objective of the dissertation is to enable the students to learn on their own as well development of skill related to research and developmental activities.

Dissertation should be related to the field of Physics. Dissertation should include declaration by the candidate, certificate by supervisor, Acknowledgement, title and introduction along with the following points:

- 1. Introduction
- 2. Review of Literature
- 3. Materials and Methods
- 4. Results and Discussions
- 5. Summary
- 6. Bibliography

COURSE TYPE: SSC/PRJ

FOURTH SEMESTER

Paper-V: MSP-D01:ENERGY PHYSICS

Course Outcomes

After completing the course the students will able to : -

- **CO -01-** Understanding of the nucleus at low energy.
- **CO -02-** Develop basics to solve some of the problems of nuclear physics and their limitations in nature.
- **CO -03-** Gain the knowledge Energy Sources and their availability-prospects of renewable energy sources.
- **CO -04-** Explain the Solar cell electrical characteristics, Efficiency-Solar water Heater-Solar, And Solar Cooking-Solar Green House.
- **CO- 05-** Understand the basic Principles of wind energy conversion-power in the wind-forces in the blades.
- **CO- 06-** learn the Biomass conversion Technologies and apply in daily life.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01	\checkmark									
CO-02			✓			~				
CO-03	✓									
CO-04										
CO-05	~							√		
CO-06		~			✓			\checkmark		

]	M.Sc. in PHYSICS	FOURTH SEMESTER					
COURSE	CODE: MSP D01	COURSE TYPE : ECC/CB					
COURSE	TITLE: ENERGY PHYSICS						
CREDIT:	06	HOURS : 90					
THEORY	: 06	THEORY: 90					
MARKS : THEORY	: 70 CCA : 30						
Scheme	of marks:						
		rrying 1 marks each to be asked ten to be attempted					
	hort answer type questions: Five questions Nord limit 100 words).	carrying 6 marks each to be asked three to be attempted					
iii. M	iddle answer type questions: Five question	s carrying 9 marks each to be set three to be attempted					
-	<i>N</i> ord limit 250 words). ong answer type questions: three questions	s carrying 11 marks each to be set two to be attempted					
	Nord limit 750 words).						
		nergy Sources and their availability-prospects of					
UNIT-1 20Hrs.	renewable energy sources- Energy from other sources-Chemical energy-Nuclear energy-						
U) 2(Energy Storage and distribution.						
01	Energy from the oceans- Energy util	ization- Energy from tides-Basic Principle of tidal					
UNIT-2 20Hrs	power-Utilization of tidal energy.						
UN 20							
0	Basic Principles of wind energy conve	rsion-power in the wind-forces in the blades- Wind					
3 2 rs	energy conversion-Advantages and Disadvantages of wind energy conversion						
UNIT-3 20 H rs	systems(WECS) Energy Storage-Applica	ations of Wind Energy.					
	Energy from Biomass: Biomass o	onversion Technologies-Wet and Dry Process-					
	Photosynthesis.						
UNIT-4 15 Hrs	Biomass Generation: Introduction-Bas	ic Process and energetic- Advantages of anaerobic					
UNI 15	digestion-Factors affecting bio-digestion	on and generation of gas- Biogas from waste fuel-					
	Properties of biogas-utilization of biogas.						
		Solar Cells, Solar Cells for direct conversion of Solar					
υ, s		ll parameter- Solar cell electrical characteristics-					
UNIT-5 15 Hrs		tillation-Solar Cooking-Solar Green House.					
1 C	mercincy Joial water meater-Joial DIS						

	1.Non-Conventional Sources of Energy by G.D.Rai,4 th edition, Khanna Publishers, New
10	Delhi(1996)
READINGS	2.Energy technology by S.Rao and Dr Paru Lekar
AD	3.John Twidell and Tony Weir ,Renewable Energy Sources,Taylor and Francis Group,
	London and New York.
STEI	4.M.P.Agrawal,Solar Energy, S. Chand and Co.
SUGGESTED	5.A.B. Meinel and A.P. Meinal, Applied Solar Energy
SUC	6.Solar Energy, Principles of Thermal Collection and Storage by S.P. Sukhatme, 2nd
	edition, Tata Mc Graw –Hill Publishing Co. Ltd. New Delhi(1997)

Paper-V: MSP-D02:SATELLITE COMMUNICATION AND REMOTE SENSING <u>Course Outcomes</u>

After completing the course the students will able to : -

- **CO -01-** The knowledge about the Satellite communications Principles and Properties
- **CO -02-** Know about the Space craft subsystems and Launch vehicles.
- **CO -03-** Design the Satellite Earth station antennas.
- **CO -04-** analyze the effects of various parameters on Satellite System performance.
- **CO -05-** understand the applications of Satellite Communication.
- **CO -06-** learn the dynamics of the satellite.
- **CO -07-** understand the communication satellite design.
- **CO -08-** understand how analog and digital technologies are used for satellite communication networks.
- **CO -09-** learn the design of satellite links.
- **CO -10-** study the design of Earth station and tracking of the satellites.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01	✓									
CO-02	✓		~							
CO-03		✓				√				
CO-04					~	√				
CO-05	\checkmark									
CO-06	\checkmark				~					
CO-07	√									
CO-08					~	~				
CO-09					\checkmark			~		
CO-10	\checkmark		✓			~				

COURSE CODE: MSP D02 COURSE TYPE : ECC/CB COURSE TITLE: SATELLITE COMMUNICATION AND REMOTE SENSING CREDIT: 06 HOURS : 90 THEORY: 06 THEORY: 90 MARKS : 100 THEORY: 90 MARKS : 100 THEORY: 90 Scheme of marks: i. Objective type questions: Twelve questions carrying 1 marks each to be asked three to be attempted (Word limit 100 words). iii. Middle answer type questions: Five questions carrying 9 marks each to be set three to be attempted (Word limit 250 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). iv. Long answer type question:: Baseband analog signal, FDM techniques, S/N and C/N ratio in FM in satellite Communication: Baseband analog signal, FDM techniques, S/N and C/N ratio in FM in satellite link. 7.100 E E 9.11 Digital Satellite transmission: Advantages, Elements of digital satellite communication, bigital base band signal, Digital modulation Techniques, Digital link Design, TDM, TDMA, some applications of sa	N	I.Sc. in PHYSICS	FOURTH SEMESTER						
CREDIT: 06 HOURS : 90 THEORY: 06 THEORY: 90 MARKS: 100 THEORY: 90 MARKS: 100 THEORY: 90 Scheme of marks: . . . i. Objective type questions: Twelve questions carrying 1 marks each to be asked three to be attempted (Word limit 100 words). . iii. Middle answer type questions: Five questions carrying 9 marks each to be set three to be attempted (Word limit 250 words). . iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 250 words). . Principle of Satellite Communication:General and Technical characteristics, Active and Passive satellites, Modem and Code communication Satellite Link Design:General link design equation, Atmospheric and Ionospheric effect on link design, Earth station parameters. Satellite Analog Communication: Baseband analog signal, FDM techniques, S/N and C/N ratio in FM in satellite link. OR E1 Digital Satellite transmission: Advantages, Elements of digital satellite communication, Digital base band signal, Digital modulation Techniques, Digital link Design, TDM, TDMA, some applications of satellite communications. Concept and Foundations of Remote Sensing: Electromagnetic Radiation (EMR), interaction of EMR with atmosphere and earth surface, Application area of remote Sensing. Char	COURSE	CODE: MSP D02	COURSE TYPE : ECC/CB						
THEORY: 06 THEORY: 90 MARKS: 100 THEORY: 70 CCA : 30 Scheme of marks: . . . i. Objective type questions: Twelve questions carrying 1 marks each to be asked three to be attempted (Word limit 100 words). . iii. Middle answer type questions: Five questions carrying 9 marks each to be set three to be attempted (Word limit 250 words). . iv. Long answer type questions: three questions carrying 1 marks each to be set two to be attempted (Word limit 250 words). rt. Principle of Satellite Communication:General and Technical characteristics, Active and Passive satellites, Modem and Code communication Satellite Link Design:General link design equation, Atmospheric and Ionospheric effect on link design, Earth station parameters. Satellite Analog Communication: Baseband analog signal, FDM techniques, S/N and C/N ratio in FM in satellite link. 02 E1 03 Digital Satellite transmission: Advantages, Elements of digital satellite communication, Digital base band signal, Digital modulation Techniques, Digital link Design, TDM, TDMA, some applications of satellite communications. Concept and Foundations of Remote Sensing: Electromagnetic Radiation (EMR), interaction of EMR with atmosphere and earth surface, Application area of remote Sensing. Characteristics of Remote Sensing Platform & Sensors: Ground, Air & Space platforms, Return Beam Vidicon, Multispectral Scanner, Brief idea of Digital Image Processing.	COURSE TITLE: SATELLITE COMMUNICATION AND REMOTE SENSING								
MARKS: 100 THEORY: 70 CCA : 30 Scheme of marks: i. Objective type questions: Twelve questions carrying 1 marks each to be asked three to be attempted (Word limit 100 words). iii. Middle answer type questions: Five questions carrying 9 marks each to be set three to be attempted (Word limit 250 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). iv. Long answer type questions: three questions: General and Technical characteristics, Active and Passive satellites, Modem and Code communication Satellite Link Design:General link design equation, Atmospheric and Ionospheric effect on link design, Earth station parameters. Satellite Analog Communication: Baseband analog signal, FDM techniques, S/N and C/N ratio in FM in satellite link. 07 SH 91 07 SH 91 08 Elements of digital satellite communication, Digital base band signal, Digital modulation Techniques, Digital link Design, TDM, TDMA, some applications of satellite communications. 07 SH 91 Concept and Foundations of Remote Sensing: Electromagnetic Radiation (EMR), interaction of EMR with atmosphere and earth surface, Application area of remote Sensing. Characteristics of Remote Sensing Platform & Sensors: Ground, Air & Space platforms, Return Beam Vidicon, Multispectral Scanner, Brief idea of Digital Image Processing. 91 Wicrowave Remote Sensing Tools: Radar Remote Sensing, Microwave Sensing, Lidar (Single and double	CREDIT: 06 HOURS : 90								
THEORY:70CCA : 30Scheme of marks:i.Objective type questions: Twelve questions carrying 1 marks each to be asked there to be attemptedii.Short answer type questions: Five questions carrying 6 marks each to be asked three to be attempted(Word limit 100 words).iii.iii.Middle answer type questions: Five questions carrying 9 marks each to be set three to be attempted(Word limit 250 words).iv.iv.Long answer type questions: three questions carrying 11 marks each to be set two to be attempted(Word limit 750 words).Principle of Satellite Communication:General and Technical characteristics, Active andPassive satellites, Modem and Code communication Satellite Link Design:General link designequation, Atmospheric and Ionospheric effect on link design, Earth station parameters.Satellite Analog Communication: Baseband analog signal, FDM techniques, S/N and C/Nratio in FM in satellite link.007Str81Digital Satellite transmission: Advantages, Elements of digital satellite communication, Digital base band signal, Digital modulation Techniques, Digital link Design, TDM, TDMA, some applications of satellite communications.7-100Concept and Foundations of Remote Sensing: Electromagnetic Radiation (EMR), interaction of EMR with atmosphere and earth surface, Application area of remote Sensing. Characteristics of Remote Sensing Platform & Sensors: Ground, Air & Space platforms, Return Beam Vidicon, Multispectral Scanner, Brief idea of Digital Image Processing.91StrMicrowave Remote Sensing Tools: Radar Remote Sensing, Microwave Sensing, Lidar (Single and double ended system), (Rad	THEORY	: 06	THEORY: 90						
Scheme of marks: i. Objective type questions: Twelve questions carrying 1 marks each to be asked ten to be attempted (Word limit 100 words). iii. Middle answer type questions: Five questions carrying 9 marks each to be asked three to be attempted (Word limit 250 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 250 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). Principle of Satellite Communication:General and Technical characteristics, Active and Passive satellites, Modem and Code communication Satellite Link Design:General link design equation, Atmospheric and Ionospheric effect on link design, Earth station parameters. Satellite Analog Communication: Baseband analog signal, FDM techniques, S/N and C/N ratio in FM in satellite link. OR E1H Digital Satellite transmission: Advantages, Elements of digital satellite communication, Digital base band signal, Digital modulation Techniques, Digital link Design, TDM, TDMA, some applications of satellite communications. Concept and Foundations of Remote Sensing: Electromagnetic Radiation (EMR), interaction of EMR with atmosphere and earth surface, Application area of remote Sensing. Characteristics of Remote Sensing Platform & Sensors: Ground, Air & Space platforms, Return Beam Vidicon, Multispectral Scanner, Brief idea of Digital Image Processing. Siter Microwave Remote Sensing Tools: Radar Remote Sensing, Microwave Sensing, Lidar (Single and double ended system)									
 i. Objective type questions: Twelve questions carrying 1 marks each to be asked ten to be attempted ii. Short answer type questions: Five questions carrying 6 marks each to be asked three to be attempted (Word limit 100 words). iii. Middle answer type questions: Five questions carrying 9 marks each to be set three to be attempted (Word limit 250 words). iv. Lorg answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). iv. Lorg answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). iv. Lorg answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). iv. Interpret of Satellite Communication:General and Technical characteristics, Active and Passive satellites, Modem and Code communication Satellite Link Design:General link design equation, Atmospheric and Ionospheric effect on link design, Earth station parameters. Satellite Analog Communication: Baseband analog signal, FDM techniques, S/N and C/N ratio in FM in satellite link. Digital Satellite transmission: Advantages, Elements of digital satellite communication, Digital base band signal, Digital modulation Techniques, Digital link Design, TDM, TDMA, some applications of satellite communications. Concept and Foundations of Remote Sensing: Electromagnetic Radiation (EMR), interaction of EMR with atmosphere and earth surface, Application area of remote Sensing. Characteristics of Remote Sensing Platform & Sensors: Ground, Air & Space platforms, Return Beam Vidicon, Multispectral Scanner, Brief idea of Digital Image Processing. Microwave Remote Sensing Tools: Radar Remote Sensing, Microwave Sensing, Lidar (Single and double ended system), (Radar & Lidar): Data Characteristics. Earth Resource Satellites: 									
ii. Short answer type questions: Five questions carrying 6 marks each to be asked three to be attempted (Word limit 100 words).iii. Midde answer type questions: Five questions carrying 9 marks each to be set three to be attempted (Word limit 250 words).iv.Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words).Principle of Satellite Communication:General and Technical characteristics, Active and Passive satellites, Modem and Code communication Satellite Link Design:General link design equation, Atmospheric and Ionospheric effect on link design, Earth station parameters.Satellite Analog Communication: Baseband analog signal, FDM techniques, S/N and C/N ratio in FM in satellite link.OTS1SignalDigital Satellite transmission: Advantages, Elements of digital satellite communication, Digital base band signal, Digital modulation Techniques, Digital link Design, TDM, TDMA, some applications of satellite communications.Concept and Foundations of Remote Sensing: Electromagnetic Radiation (EMR), interaction of EMR with atmosphere and earth surface, Application area of remote Sensing. Characteristics of Remote Sensing Platform & Sensors: Ground, Air & Space platforms, Return Beam Vidicon, Multispectral Scanner, Brief idea of Digital Image Processing.SingMicrowave Remote Sensing Tools: Radar Remote Sensing, Microwave Sensing, Lidar (Single and double ended system), (Radar & Lidar): Data Characteristics. Earth Resource Satellites:									
(Word limit 100 words).iii.Middle answer type questions: Five questions carrying 9 marks each to be set three to be attempted (Word limit 250 words).iv.Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words).iv.Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words).iv.Principle of Satellite Communication:General and Technical characteristics, Active and Passive satellites, Modem and Code communication Satellite Link Design:General link design equation, Atmospheric and Ionospheric effect on link design, Earth station parameters.Satellite Analog Communication: Baseband analog signal, FDM techniques, S/N and C/N ratio in FM in satellite link.02S103Digital Satellite transmission: Advantages, Elements of digital satellite communication, Digital base band signal, Digital modulation Techniques, Digital link Design, TDM, TDMA, some applications of satellite communications.7:LINDConcept and Foundations of Remote Sensing: Electromagnetic Radiation (EMR), interaction of EMR with atmosphere and earth surface, Application area of remote Sensing. Characteristics of Remote Sensing Platform & Sensors: Ground, Air & Space platforms, Return Beam Vidicon, Multispectral Scanner, Brief idea of Digital Image Processing.9Lidar (Single and double ended system), (Radar & Lidar): Data Characteristics. Earth Resource Satellites:									
(Word limit 250 words).iv.Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words).Principle of Satellite Communication:General and Technical characteristics, Active and Passive satellites, Modem and Code communication Satellite Link Design:General link design equation, Atmospheric and Ionospheric effect on link design, Earth station parameters.Satellite Analog Communication: Baseband analog signal, FDM techniques, S/N and C/N ratio in FM in satellite link.OCSatellite transmission: Advantages, Elements of digital satellite communication, Digital base band signal, Digital modulation Techniques, Digital link Design, TDM, TDMA, some applications of satellite communications.Concept and Foundations of Remote Sensing: Electromagnetic Radiation (EMR), interaction of EMR with atmosphere and earth surface, Application area of remote Sensing. Characteristics of Remote Sensing Platform & Sensors: Ground, Air & Space platforms, Return Beam Vidicon, Multispectral Scanner, Brief idea of Digital Image Processing.Stress Stress Stress Stress Stress Stress StressMicrowave Remote Sensing Tools: Radar Remote Sensing, Microwave Sensing, Lidar (Single and double ended system), (Radar & Lidar): Data Characteristics. Earth Resource Satellites:	/)	Nord limit 100 words).							
 iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). Principle of Satellite Communication:General and Technical characteristics, Active and Passive satellites, Modem and Code communication Satellite Link Design:General link design equation, Atmospheric and Ionospheric effect on link design, Earth station parameters. Satellite Analog Communication: Baseband analog signal, FDM techniques, S/N and C/N ratio in FM in satellite link. Digital Satellite transmission: Advantages, Elements of digital satellite communication, Digital base band signal, Digital modulation Techniques, Digital link Design, TDM, TDMA, some applications of satellite communications. Concept and Foundations of Remote Sensing: Electromagnetic Radiation (EMR), interaction of EMR with atmosphere and earth surface, Application area of remote Sensing. Characteristics of Remote Sensing Platform & Sensors: Ground, Air & Space platforms, Return Beam Vidicon, Multispectral Scanner, Brief idea of Digital Image Processing. Microwave Remote Sensing Tools: Radar Remote Sensing, Microwave Sensing, Lidar (Single and double ended system), (Radar & Lidar): Data Characteristics. Earth Resource Satellites: 			s carrying 9 marks each to be set three to be attempted						
 Principle of Satellite Communication:General and Technical characteristics, Active and Passive satellites, Modem and Code communication Satellite Link Design:General link design equation, Atmospheric and Ionospheric effect on link design, Earth station parameters. Satellite Analog Communication: Baseband analog signal, FDM techniques, S/N and C/N ratio in FM in satellite link. Digital Satellite transmission: Advantages, Elements of digital satellite communication, Digital base band signal, Digital modulation Techniques, Digital link Design, TDM, TDMA, some applications of satellite communications. Concept and Foundations of Remote Sensing: Electromagnetic Radiation (EMR), interaction of EMR with atmosphere and earth surface, Application area of remote Sensing. Characteristics of Remote Sensing Platform & Sensors: Ground, Air & Space platforms, Return Beam Vidicon, Multispectral Scanner, Brief idea of Digital Image Processing. Microwave Remote Sensing Tools: Radar Remote Sensing, Microwave Sensing, Lidar (Single and double ended system), (Radar & Lidar): Data Characteristics. Earth Resource Satellites: 	iv. L	ong answer type questions: three questions	s carrying 11 marks each to be set two to be attempted						
FinalPassive satellites, Modem and Code communication Satellite Link Design:General link design equation, Atmospheric and Ionospheric effect on link design, Earth station parameters.Satellite Analog Communication: Baseband analog signal, FDM techniques, S/N and C/N ratio in FM in satellite link.OTSatellite Analog Communication: Advantages, Elements of digital satellite communication, Digital base band signal, Digital modulation Techniques, Digital link Design, TDM, TDMA, some applications of satellite communications.OTSatellite transmission: Advantages, Elements of digital satellite communication, Digital base band signal, Digital modulation Techniques, Digital link Design, TDM, TDMA, some applications of satellite communications.OTConcept and Foundations of Remote Sensing: Electromagnetic Radiation (EMR), interaction of EMR with atmosphere and earth surface, Application area of remote Sensing. Characteristics of Remote Sensing Platform & Sensors: Ground, Air & Space platforms, Return Beam Vidicon, Multispectral Scanner, Brief idea of Digital Image Processing.StrueMicrowave Remote Sensing Tools: Radar Remote Sensing, Microwave Sensing, Lidar (Single and double ended system), (Radar & Lidar): Data Characteristics. Earth Resource Satellites:	()	,	Conoral and Tachnical characteristics Active and						
StepSatellite Analog Communication: Baseband analog signal, FDM techniques, S/N and C/N ratio in FM in satellite link.OCE:LINDDigital Satellite transmission: Advantages, Elements of digital satellite communication, Digital base band signal, Digital modulation Techniques, Digital link Design, TDM, TDMA, some applications of satellite communications.OCE:LINDConcept and Foundations of Remote Sensing: Electromagnetic Radiation (EMR), interaction of EMR with atmosphere and earth surface, Application area of remote Sensing. Characteristics of Remote Sensing Platform & Sensors: Ground, Air & Space platforms, Return Beam Vidicon, Multispectral Scanner, Brief idea of Digital Image Processing.StateMicrowave Remote Sensing Tools: Radar Remote Sensing, Microwave Sensing, Lidar (Single and double ended system), (Radar & Lidar): Data Characteristics. Earth Resource Satellites:		•							
StepSatellite Analog Communication: Baseband analog signal, FDM techniques, S/N and C/N ratio in FM in satellite link.OCE:LINDDigital Satellite transmission: Advantages, Elements of digital satellite communication, Digital base band signal, Digital modulation Techniques, Digital link Design, TDM, TDMA, some applications of satellite communications.OCE:LINDConcept and Foundations of Remote Sensing: Electromagnetic Radiation (EMR), interaction of EMR with atmosphere and earth surface, Application area of remote Sensing. Characteristics of Remote Sensing Platform & Sensors: Ground, Air & Space platforms, Return Beam Vidicon, Multispectral Scanner, Brief idea of Digital Image Processing.StateMicrowave Remote Sensing Tools: Radar Remote Sensing, Microwave Sensing, Lidar (Single and double ended system), (Radar & Lidar): Data Characteristics. Earth Resource Satellites:	NIT 0Hr								
SHOTratio in FM in satellite link.OCE:LINDDigital Satellite transmission: Advantages, Elements of digital satellite communication, Digital base band signal, Digital modulation Techniques, Digital link Design, TDM, TDMA, some applications of satellite communications.SHSHSHConcept and Foundations of Remote Sensing: Electromagnetic Radiation (EMR), interaction of EMR with atmosphere and earth surface, Application area of remote Sensing. 	U 2	equation, Atmospheric and Ionospheric	effect on link design, Earth station parameters.						
OF STHDigital Satellite transmission: Advantages, Elements of digital satellite communication, Digital base band signal, Digital modulation Techniques, Digital link Design, TDM, TDMA, some applications of satellite communications.SH 		Satellite Analog Communication: Base	band analog signal, FDM techniques, S/N and C/N						
OF STHDigital Satellite transmission: Advantages, Elements of digital satellite communication, Digital base band signal, Digital modulation Techniques, Digital link Design, TDM, TDMA, some applications of satellite communications.SH STHConcept and Foundations of Remote Sensing: Electromagnetic Radiation (EMR), interaction of EMR with atmosphere and earth surface, Application area of remote Sensing. Characteristics of Remote Sensing Platform & Sensors: Ground, Air & Space platforms, Return Beam Vidicon, Multispectral Scanner, Brief idea of Digital Image Processing.SH SH SH SHMicrowave Remote Sensing Tools: Radar Remote Sensing, Microwave Sensing, Lidar (Single and double ended system), (Radar & Lidar): Data Characteristics. Earth Resource Satellites:	IT-2 Hrs	ratio in FM in satellite link.							
StructDigital base band signal, Digital modulation Techniques, Digital link Design, TDM, TDMA, some applications of satellite communications.StructConcept and Foundations of Remote Sensing: Electromagnetic Radiation (EMR), interaction of EMR with atmosphere and earth surface, Application area of remote Sensing. Characteristics of Remote Sensing Platform & Sensors: Ground, Air & Space platforms, 	UN 20								
StructDigital base band signal, Digital modulation Techniques, Digital link Design, TDM, TDMA, some applications of satellite communications.StructConcept and Foundations of Remote Sensing: Electromagnetic Radiation (EMR), interaction of EMR with atmosphere and earth surface, Application area of remote Sensing. Characteristics of Remote Sensing Platform & Sensors: Ground, Air & Space platforms, 	0	Digital Satellite transmission: Advantages, Elements of digital satellite communication							
Concept and Foundations of Remote Sensing: Electromagnetic Radiation (EMR), interaction of EMR with atmosphere and earth surface, Application area of remote Sensing. Characteristics of Remote Sensing Platform & Sensors: Ground, Air & Space platforms, Return Beam Vidicon, Multispectral Scanner, Brief idea of Digital Image Processing.SH CSH <th>3 2 IS</th> <th colspan="7"></th>	3 2 IS								
Concept and Foundations of Remote Sensing: Electromagnetic Radiation (EMR), interaction of EMR with atmosphere and earth surface, Application area of remote Sensing. Characteristics of Remote Sensing Platform & Sensors: Ground, Air & Space platforms, Return Beam Vidicon, Multispectral Scanner, Brief idea of Digital Image Processing.SH CSH CSH CSH 	.TIV								
SHSHof EMR with atmosphere and earth surface, Application area of remote Sensing. Characteristics of Remote Sensing Platform & Sensors: Ground, Air & Space platforms, Return Beam Vidicon, Multispectral Scanner, Brief idea of Digital Image Processing.SHSHMicrowave Remote Sensing Tools: Radar Remote Sensing, Microwave Sensing, Lidar (Single and double ended system), (Radar & Lidar): Data Characteristics. Earth Resource Satellites:	'n								
LineCharacteristics of Remote Sensing Platform & Sensors: Ground, Air & Space platforms, Return Beam Vidicon, Multispectral Scanner, Brief idea of Digital Image Processing.StarMicrowave Remote Sensing Tools: Radar Remote Sensing, Microwave Sensing, Lidar (Single and double ended system), (Radar & Lidar): Data Characteristics. Earth Resource Satellites:									
Return Beam Vidicon, Multispectral Scanner, Brief idea of Digital Image Processing.Microwave Remote Sensing Tools: Radar Remote Sensing, Microwave Sensing, Lidar (Single and double ended system), (Radar & Lidar): Data Characteristics. Earth Resource Satellites:	T-4 Hrs	of EMR with atmosphere and ear	th surface, Application area of remote Sensing.						
Return Beam Vidicon, Multispectral Scanner, Brief idea of Digital Image Processing.Microwave Remote Sensing Tools: Radar Remote Sensing, Microwave Sensing, Lidar (Single and double ended system), (Radar & Lidar): Data Characteristics. Earth Resource Satellites:	UNI 15	atform & Sensors: Ground, Air & Space platforms,							
and double ended system), (Radar & Lidar): Data Characteristics. Earth Resource Satellites:		Return Beam Vidicon, Multispectral Scanner, Brief idea of Digital Image Processing.							
and double ended system), (Radar & Lidar): Data Characteristics. Earth Resource Satellites: Brief description of Landsat and Indian remote sensing satellites (IRS) Satellites.		Microwave Remote Sensing Tools: Rad	ar Remote Sensing, Microwave Sensing, Lidar (Single						
Brief description of Landsat and Indian remote sensing satellites (IRS) Satellites.	IT-5 Hrs	and double ended system), (Radar & Lidar): Data Characteristics. Earth Resource Satellites:							
	UN 15	Brief description of Landsat and Indian remote sensing satellites (IRS) Satellites.							

GS	1. Satellite Communication : D.C. Agrawal and A. K. Maini.					
DINC	2. Satellite Communication: T. Pratt and C. W. Bostiern.					
READINGS	3. Satellite Communication System: M. Richharia.					
	4. Introduction of Remote Sensing: J.B. Campbell.					
ESTI						
SUGGESTED						
SU						

Paper-V: MSP-D03:CRYSTAL GROWTH AND THIN FILM PHYSICS

Course Outcomes

After completing the course the students will able to : -

- **CO 01-** Understand the fundamentals of crystal growth and nucleation.
- **CO 02-** Analyse the low temperature method of crystal growth.
- **CO 03-** Understand the melt growth technique of crystal growing.
- **CO 04-** Be aware of Thin film formation through vapour deposition
- **CO 05-** Introduce Characterization techniques
- **CO 06-** Understand the formation of thin film mechanism.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01	\checkmark									
CO-02			✓			✓				
CO-03	~									
CO-04								✓		
CO-05		~					√			
CO-06	~									

COURSE CODE: MSP D03 COURSE TYPE : ECC/CB COURSE TITLE: CRYSTAL GROWTH AND THIN FILM PHYSICS HOURS : 90 THEORY: 06 HOURS : 90 THEORY: 70 CCA : 30 Scheme of marks: I Objective type questions: Twelve questions carrying 1 marks each to be asked three to be attempted I. Objective type questions: Five questions carrying 9 marks each to be asked three to be attempted II. Middle answer type questions: Five questions carrying 1 marks each to be set three to be attempted II. Middle answer type questions: three questions carrying 11 marks each to be set two to be attempted IV. Long answer type questions: three questions carrying 1 marks each to be set two to be attempted IV. Vord limit 750 words). IV. Long answer type questions: three question - carrying 11 marks each to be set two to be attempted IV. Kinetics of Thin Films Thin Film Structure - Crystal System and Symmetry. Growth Techniques Solution Growth Technique: Low temperature solution growth: Solution Stota Solubility and super solubility - Expression of super saturation - Miers T-C diagram - Constant temperature bath and crystallizer - Seed preparation and mounting - Slow cooling and solvent evaporation methods. Strees Various c		M.Sc. in PHYSICS	FOURTH SEMESTER						
CREDIT: 06 HOURS : 90 THEORY: 06 THEORY: 90 MARKS: 100 TOCA : 30 Scheme of marks: i. Objective type questions: Five questions carrying 6 marks each to be asked three to be attempted (Word limit 250 words). Wit Long answer type questions: Five questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). Wit Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). Wit Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). Wit Long answer type questions: Three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). Wit Nucleation and Growth Nucleation – Different kinds of nucleation - Concept of formation of critical nucleus – Classical theory of nucleation - Spherical and cylindrical nucleus - Growth Kinetics of Thin Films – Thin Film Struc	COURSE	CODE: MSP D03	COURSE TYPE : ECC/CB						
THEORY: 06 THEORY: 90 MARKS: 100 THEORY: 70 CCA : 30 Scheme of marks: . Objective type questions: Twelve questions carrying 6 marks each to be asked three to be attempted (Word limit 100 words). II. Middle answer type questions: Five questions carrying 9 marks each to be set three to be attempted (Word limit 250 words). IV. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 250 words). IV. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). IV. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). IV. Interstore questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). IV. Cong answer type questions: Three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). IV. Interstore question and Growth Nucleation – Different kinds of nucleation - Concept of formation of critical nucleus – Classical theory of nucleation - Spherical and cylindrical nucleus - Growth Kinetics of Thin Films - Thin Film Structure – Crystal System and Symmetry. Growth Techniques Solution Growth Technique: Low temperature solution growth: Solution - Solubility and super solubility – Expression of super saturation – Miers T-C diagram - Constant temperature	COURSE TITLE: CRYSTAL GROWTH AND THIN FILM PHYSICS								
MARKS : 100 THEORY: 70 CCA : 30 Scheme of marks: i. Objective type questions: Twelve questions carrying 6 marks each to be asked three to be attempted (Word limit 100 words). iii. Middle answer type questions: Five questions carrying 9 marks each to be set three to be attempted (Word limit 250 words). iv. Long answer type questions: three questions carrying 9 marks each to be set two to be attempted (Word limit 250 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). iv. Constant temperature classical theory of nucleation - Spherical and cylindrical nucleus - Growth Kinetics of Thin Films - Thin Film Structure - Crystal System and Symmetry. Growth Techniques Solution Growth Technique	CREDIT: 06 HOURS : 90								
THEORY: 70 CCA : 30Scheme of marks:i.Objective type questions: Twelve questions carrying 1 marks each to be asked three to be attempted (Word limit 100 words).iii.Middle answer type questions: Five questions carrying 9 marks each to be set three to be attempted (Word limit 750 words).iv.Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words).iv.Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words).iv.Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words).iv.Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words).iv.Long answer type questions: Thire questions carrying 11 marks each to be set two to be attempted (Word limit 750 words).iv.Long answer type questions: Thire questions carrying 11 marks each to be set two to be attempted (Word limit 750 words).iv.Long answer type questions: Thire questions carrying 11 marks each to be set two to be attempted (Word limit 750 words).iv.Long and Fab Evaluation - Different kinds of nucleation - Concept of formation of critical nucleus - Classical theory of nucleation - Spherical and cylindrical nucleus - Growth Kinetics of Thin Films - Thin Film Structure - Crystal System and Symmetry.6Growth Techniques Solution Growth Technique: Low temperature solution growth: Solution - Solubility and super solubility - Expression of super saturation - Miers T-C diagram - Constant temperature bath and crystallizer - Seed preparation	THEORY: 06THEORY: 90								
Scheme of marks: i. Objective type questions: Twelve questions carrying 1 marks each to be asked ten to be attempted (Word limit 100 words). iii. Middle answer type questions: Five questions carrying 9 marks each to be set three to be attempted (Word limit 250 words). iv. Long answer type questions: Five questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). vic. Intervention and Growth Nucleation – Different kinds of nucleation - Concept of formation of critical nucleus – Classical theory of nucleation - Spherical and cylindrical nucleus - Growth Kinetics of Thin Films - Thin Film Structure – Crystal System and Symmetry. Growth Techniques Solution Growth Technique: Low temperature solution growth: Solution - Solubility and super solubility – Expression of super saturation – Miers T-C diagram - Constant temperature bath and crystallizer - Seed preparation and mounting - Slow cooling and solvent evaporation methods. Stip Melt and Vapour Growth Techniques Melt technique: Bridgman technique - Exp									
ii. Short answer type questions: Five questions carrying 6 marks each to be asked three to be attempted (Word limit 100 words). iii. Middle answer type questions: Five questions carrying 9 marks each to be set three to be attempted (Word limit 250 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 250 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words). iv. Nucleation and Growth Nucleation - Different kinds of nucleation - Concept of formation of critical nucleus - Classical theory of nucleation - Spherical and cylindrical nucleus - Growth Kinetics of Thin Film Structure - Crystal System and Symmetry. Growth Techniques Solution Growth Technique: Low temperature solution growth: Solution - Solubility and super solubility - Expression of super saturation - Miers T-C diagram - Constant temperature bath and crystallizer - Seed preparation and mounting - Slow cooling and solvent evaporation methods. Melt and Vapour Growth Techniques Melt technique: Bridgman technique - Basic process - Various crucibles design - Thermal consideration - Vertical Bridgman									
(Word limit 100 words).Widdle answer type questions: Five questions carrying 9 marks each to be set three to be attempted (Word limit 750 words).iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words).Interval and Growth Nucleation – Different kinds of nucleation - Concept of formation of critical nucleus – Classical theory of nucleation - Spherical and cylindrical nucleus - Growth Kinetics of Thin Films - Thin Film Structure – Crystal System and Symmetry.Growth Techniques Solution Growth Technique: Low temperature solution growth: Solution - Solubility and super solubility – Expression of super saturation – Miers T-C diagram - Constant temperature bath and crystallizer - Seed preparation and mounting - Slow cooling and solvent evaporation methods.Melt and Vapour Growth Techniques Melt technique: Bridgman technique - Basic process – Various crucibles design - Thermal consideration – Vertical Bridgman technique - Czochralski technique - Experimental arrangement – Growth process.Vapour technique: Physical vapour deposition – Chemical vapour deposition (CVD) – Chemical Vapour Transport.Thin Film Deposition Techniques Thin Films – Introduction to Vacuum Technology - Deposition Techniques - Physical Methods – Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods – Spray Pyrolysis – Preparation of Transparent Conducting Oxides.Current ransform Infrared analysis (ET-IR) – Elemental analysis – Elemental dispersive X-ray analysis (EDAX) - Scanning Electron Microscopy (SEM) – UV-Vis-NIR Spectrometer – Etching <th>i. O</th> <th>bjective type questions: Twelve questions ca</th> <th>rrying 1 marks each to be asked ten to be attempted</th>	i. O	bjective type questions: Twelve questions ca	rrying 1 marks each to be asked ten to be attempted						
Middle answer type questions: Five questions carrying 9 marks each to be set three to be attempted (Word limit 250 words).iv.Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words).FENDNucleation and Growth Nucleation - Different kinds of nucleation - Concept of formation of critical nucleus - Classical theory of nucleation - Spherical and cylindrical nucleus - Growth Kinetics of Thin Films - Thin Film Structure - Crystal System and Symmetry.FENDGrowth Techniques Solution Growth Technique: Low temperature solution growth: Solution - Solubility and super solubility - Expression of super saturation - Miers T-C diagram - Constant temperature bath and crystallizer - Seed preparation and mounting - Slow cooling and solvent evaporation methods.Melt and Vapour Growth Techniques Melt technique: Bridgman technique - Basic process - Various crucibles design - Thermal consideration - Vertical Bridgman technique - Czochralski technique - Experimental arrangement - Growth process.Vapour technique: Physical vapour deposition - Chemical vapour deposition (CVD) - Chemical Vapour Transport.Thin Film Deposition Techniques Thin Films - Introduction to Vacuum Technology - Deposition Techniques - Physical Methods - Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods - Spray Pyrolysis - Preparation of Transparent Conducting Oxides.F100Set StateStateCharacterization Technique X - Ray Diffraction (XRD) - Powder and single crystal - Fourier transform Infrared analysis (FT-IR) - Elemental analysis - Elemental dispersive X-ray analysis (EDAX) - Scanning Electron Microscopy (SEM) - UV-Vis-NIR Spectrometer - Etching			carrying 6 marks each to be asked three to be attempted						
iv. Long answer type questions: three questions carrying 11 marks each to be set two to be attempted (Word limit 750 words).FLINNNucleation and Growth Nucleation - Different kinds of nucleation - Concept of formation of critical nucleus - Classical theory of nucleation - Spherical and cylindrical nucleus - Growth Kinetics of Thin Films - Thin Film Structure - Crystal System and Symmetry.Constant temperature solution Growth Technique: Low temperature solution growth: Solution - Solubility and super solubility - Expression of super saturation - Miers T-C diagram - Constant temperature bath and crystallizer - Seed preparation and mounting - Slow cooling and solvent evaporation methods.SHO2Melt and Vapour Growth Techniques Melt technique: Bridgman technique - Basic process - Various crucibles design - Thermal consideration - Vertical Bridgman technique - Czochralski technique - Experimental arrangement - Growth process.Vapour technique: Physical vapour deposition - Chemical Vapour Transport.Thin Film Deposition Techniques Thin Films - Introduction to Vacuum Technology - Deposition Techniques - Physical Methods - Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods - Spray Pyrolysis - Preparation of Transparent Conducting Oxides.StrunnStrung Strue Structure - Chemical analysis (EDAX) - Scanning Electron Microscopy (SEM) - UV-Vis-NIR Spectrometer - Etching	iii. M	liddle answer type questions: Five question	s carrying 9 marks each to be set three to be attempted						
(Word limit 750 words).FLINDNucleation and Growth Nucleation - Different kinds of nucleation - Concept of formation of critical nucleus - Classical theory of nucleation - Spherical and cylindrical nucleus - Growth Kinetics of Thin Films - Thin Film Structure - Crystal System and Symmetry.7-LINDGrowth Techniques Solution Growth Technique: Low temperature solution growth: Solution - Solubility and super solubility - Expression of super saturation - Miers T-C diagram - Constant temperature bath and crystallizer - Seed preparation and mounting - Slow cooling and solvent evaporation methods.81Melt and Vapour Growth Techniques Melt technique: Bridgman technique - Basic process - Various crucibles design - Thermal consideration - Vertical Bridgman technique - Czochralski technique - Experimental arrangement - Growth process.81Vapour technique: Physical vapour deposition - Chemical vapour deposition (CVD) - Chemical Vapour Transport.91Thin Film Deposition Techniques Thin Films - Introduction to Vacuum Technology - Deposition Techniques - Physical Methods - Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods - Spray Pyrolysis - Preparation of Transparent Conducting Oxides.91State Characterization Technique X - Ray Diffraction (XRD) - Powder and single crystal - Fourier transform Infrared analysis (FT-IR) - Elemental analysis - Elemental dispersive X-ray analysis (EDAX) - Scanning Electron Microscopy (SEM) - UV-Vis-NIR Spectrometer - Etching		,	s carrying 11 marks each to be set two to be attempted						
FINDcritical nucleus - Classical theory of nucleation - Spherical and cylindrical nucleus - Growth Kinetics of Thin Films - Thin Film Structure - Crystal System and Symmetry.ConstantGrowth Techniques Solution Growth Technique: Low temperature solution growth: Solution - Solubility and super solubility - Expression of super saturation - Miers T-C diagram - Constant temperature bath and crystallizer - Seed preparation and mounting - Slow cooling and solvent evaporation methods.SHOTE:Melt and Vapour Growth Techniques Melt technique: Bridgman technique - Basic process - Various crucibles design - Thermal consideration - Vertical Bridgman technique - Czochralski technique - Experimental arrangement - Growth process. Vapour technique: Physical vapour deposition - Chemical vapour deposition (CVD) - Chemical Vapour Transport.FINDFilm Deposition Techniques Thin Films - Introduction to Vacuum Technology - Deposition Techniques - Physical Methods - Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods - Spray Pyrolysis - Preparation of Transparent Conducting Oxides.Start Characterization Technique X - Ray Diffraction (XRD) - Powder and single crystal - Fourier transform Infrared analysis (FT-IR) - Elemental analysis - Elemental dispersive X-ray analysis (EDAX) - Scanning Electron Microscopy (SEM) - UV-Vis-NIR Spectrometer - Etching		Word limit 750 words).							
Statistics <th>1</th> <th></th> <th>-</th>	1		-						
Statistics <th>NIT- 0Hr</th> <td>critical nucleus – Classical theory of nu</td> <td>cleation - Spherical and cylindrical nucleus - Growth</td>	NIT- 0Hr	critical nucleus – Classical theory of nu	cleation - Spherical and cylindrical nucleus - Growth						
 Solubility and super solubility – Expression of super saturation – Miers T-C diagram - Constant temperature bath and crystallizer - Seed preparation and mounting - Slow cooling and solvent evaporation methods. Melt and Vapour Growth Techniques Melt technique: Bridgman technique - Basic process – Various crucibles design - Thermal consideration – Vertical Bridgman technique - Czochralski technique – Experimental arrangement – Growth process. Vapour technique: Physical vapour deposition – Chemical vapour deposition (CVD) – Chemical Vapour Transport. Thin Film Deposition Techniques Thin Films – Introduction to Vacuum Technology - Deposition Techniques - Physical Methods – Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods – Spray Pyrolysis – Preparation of Transparent Conducting Oxides. Characterization Technique X – Ray Diffraction (XRD) – Powder and single crystal - Fourier transform Infrared analysis (FT-IR) – Elemental analysis – Elemental dispersive X-ray analysis (EDAX) - Scanning Electron Microscopy (SEM) – UV-Vis-NIR Spectrometer – Etching 	U 3	Kinetics of Thin Films - Thin Film Struct	ture – Crystal System and Symmetry.						
LIND TO Constant temperature bath and crystallizer - Seed preparation and mounting - Slow cooling and solvent evaporation methods.SH02 E-LINDMelt and Vapour Growth Techniques Melt technique: Bridgman technique - Basic process - Various crucibles design - Thermal consideration - Vertical Bridgman technique - Czochralski technique - Experimental arrangement - Growth process. Vapour technique: Physical vapour deposition - Chemical vapour deposition (CVD) - Chemical Vapour Transport.Thin Film Deposition Techniques Thin Films - Introduction to Vacuum Technology - Deposition Techniques - Physical Methods - Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods - Spray Pyrolysis - Preparation of Transparent Conducting Oxides.SH 51 ST 51 		Growth Techniques Solution Growth Te	echnique: Low temperature solution growth: Solution						
SHOTSet of the sector of the sect	I-2 lrs	- Solubility and super solubility – Exp	pression of super saturation – Miers T-C diagram -						
SHOTSet of the sector of the sect	UNI 20H	Constant temperature bath and crystal	lizer - Seed preparation and mounting - Slow cooling						
SHOT CLINNVarious crucibles design - Thermal consideration - Vertical Bridgman technique - Czochralski technique - Experimental arrangement - Growth process. Vapour technique: Physical vapour deposition - Chemical vapour deposition (CVD) - Chemical Vapour Transport.Thin Film Deposition Techniques Thin Films - Introduction to Vacuum Technology - Deposition Techniques - Physical Methods - Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency 		and solvent evaporation methods.							
StillVapour technique: Physical vapour deposition – Chemical vapour deposition (CVD) – Chemical Vapour Transport.Thin Film Deposition Techniques Thin Films – Introduction to Vacuum Technology - Deposition Techniques - Physical Methods – Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods – Spray Pyrolysis – Preparation of Transparent Conducting Oxides.StillCharacterization Technique X – Ray Diffraction (XRD) – Powder and single crystal - Fourier transform Infrared analysis (FT-IR) – Elemental analysis – Elemental dispersive X-ray analysis (EDAX) - Scanning Electron Microscopy (SEM) – UV-Vis-NIR Spectrometer – Etching	s	Melt and Vapour Growth Techniques M	lelt technique: Bridgman technique - Basic process –						
StillVapour technique: Physical vapour deposition – Chemical vapour deposition (CVD) – Chemical Vapour Transport.Thin Film Deposition Techniques Thin Films – Introduction to Vacuum Technology - Deposition Techniques - Physical Methods – Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods – Spray Pyrolysis – Preparation of Transparent Conducting Oxides.StillCharacterization Technique X – Ray Diffraction (XRD) – Powder and single crystal - Fourier transform Infrared analysis (FT-IR) – Elemental analysis – Elemental dispersive X-ray analysis (EDAX) - Scanning Electron Microscopy (SEM) – UV-Vis-NIR Spectrometer – Etching	H	Various crucibles design - Thermal consideration – Vertical Bridgman technique							
SH Thin Film Deposition Techniques Thin Films – Introduction to Vacuum Technology - Deposition Techniques - Physical Methods – Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods – Spray Pyrolysis – Preparation of Transparent Conducting Oxides.SH Characterization Technique X – Ray Diffraction (XRD) – Powder and single crystal - Fourier transform Infrared analysis (FT-IR) – Elemental analysis – Elemental dispersive X-ray analysis (EDAX) - Scanning Electron Microscopy (SEM) – UV-Vis-NIR Spectrometer – Etching		Czochralski technique – Experimental a	rrangement – Growth process.						
SH Thin Film Deposition Techniques Thin Films – Introduction to Vacuum Technology - Deposition Techniques - Physical Methods – Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods – Spray Pyrolysis – Preparation of Transparent Conducting Oxides.SH Characterization Technique X – Ray Diffraction (XRD) – Powder and single crystal - Fourier transform Infrared analysis (FT-IR) – Elemental analysis – Elemental dispersive X-ray analysis (EDAX) - Scanning Electron Microscopy (SEM) – UV-Vis-NIR Spectrometer – Etching	LI-3	Vapour technique: Physical vapour o	leposition – Chemical vapour deposition (CVD) –						
Provide <t< td=""><th>NN</th><td>Chemical Vapour Transport.</td><td></td></t<>	NN	Chemical Vapour Transport.							
SHGun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods – Spray Pyrolysis – Preparation of Transparent Conducting Oxides.SHCharacterization Technique X – Ray Diffraction (XRD) – Powder and single crystal - Fourier transform Infrared analysis (FT-IR) – Elemental analysis – Elemental dispersive X-ray analysis (EDAX) - Scanning Electron Microscopy (SEM) – UV-Vis-NIR Spectrometer – Etching		Thin Film Deposition Techniques Th	in Films – Introduction to Vacuum Technology -						
Oxides.Characterization Technique X – Ray Diffraction (XRD) – Powder and single crystal - Fouriertransform Infrared analysis (FT-IR) – Elemental analysis – Elemental dispersive X-rayanalysis (EDAX) - Scanning Electron Microscopy (SEM) – UV-Vis-NIR Spectrometer – Etching	(0	Deposition Techniques - Physical Meth	nods – Resistive Heating, Electron Beam Gun, Laser						
Oxides.Characterization Technique X – Ray Diffraction (XRD) – Powder and single crystal - Fouriertransform Infrared analysis (FT-IR) – Elemental analysis – Elemental dispersive X-rayanalysis (EDAX) - Scanning Electron Microscopy (SEM) – UV-Vis-NIR Spectrometer – Etching	IT-4 Hr:	Gun Evaporation and Flash Evaporation	ns, Sputtering - Reactive Sputtering, Radio-Frequency						
Characterization Technique X – Ray Diffraction (XRD) – Powder and single crystal - Fourier transform Infrared analysis (FT-IR) – Elemental analysis – Elemental dispersive X-ray analysis (EDAX) - Scanning Electron Microscopy (SEM) – UV-Vis-NIR Spectrometer – Etching	Sputtering - Chemical Methods – Spray Pyrolysis – Preparation of Transparent								
transform Infrared analysis (FT-IR) – Elemental analysis – Elemental dispersive X-ray analysis (EDAX) - Scanning Electron Microscopy (SEM) – UV-Vis-NIR Spectrometer – Etching		Oxides.							
analysis (EDAX) - Scanning Electron Microscopy (SEM) – UV-Vis-NIR Spectrometer – Etching		Characterization Technique X – Ray Di	ffraction (XRD) – Powder and single crystal - Fourier						
analysis (EDAX) - Scanning Electron Microscopy (SEM) – UV-Vis-NIR Spectrometer – Etching (Chemical) – Vickers Micro hardness.	rs s	transform Infrared analysis (FT-IR) -	- Elemental analysis – Elemental dispersive X-ray						
Chemical) – Vickers Micro hardness.	NIT 5 H	analysis (EDAX) - Scanning Electron Mi	croscopy (SEM) – UV-Vis-NIR Spectrometer – Etching						
		(Chemical) – Vickers Micro hardness.							

GS	1. J.C. Brice, Crystal Growth Processes, John Wiley and Sons, New York (1986)
READINGS	2. P. SanthanaRagavan and P. Ramasamy, Crystal Growth Processes and Methods, KRU
REAL	Publications, Kumbakonam (2001)
	3. A. Goswami, Thin Film Fundamentals, New Age International (P) Limited, New Delhi
EST	(1996)
SUGGESTED	4. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, CBS, Publishers and Distributors, New Delhi
SI	

Paper-V: MSP-D04: RENORMALIZATION AND SUPERSYMMETRY

Course Outcomes

After completing the course the students will able to : -

- **CO -01-** Understand the algebraic origin of supersymmetry as an extension of Special Relativity.
- **CO -02-** Understand research papers dealing with the phenomenology of supersymmetric particles and supersymmetric model building.
- **CO -03-** Interpret the current and future experimental results from searches for supersymmetry.
- **CO -04-** Understand the fundamental arguments in favor of supersymmetry at low energies, and the problems that the theory faces.
- **CO -05-** Carry out calculations in perturbation theory of supersymmetric particle production, scattering on ordinary matter, annihilation and decay.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO-09	PO-10
CO-01	\checkmark									
CO-02	~		✓							
CO-03						√		√		
CO-04	~									
CO-05	~			~						

N	1.Sc. in PHYSICS	FOURTH SEMESTER						
COURSE	CODE: MSP D04	COURSE TYPE : ECC/CB						
COURSE	COURSE TITLE: RENORMALIZATION AND SUPERSYMMETRY							
CREDIT:	CREDIT: 06 HOURS : 90							
THEORY	: 06	THEORY: 90						
MARKS : THEORY								
Scheme	of marks:							
ii. S (V	ii. Short answer type questions: Five questions carrying 6 marks each to be asked three to be attempted (Word limit 100 words).							
	Nord limit 250 words).	s carrying 9 marks each to be set three to be attempted						
	ong answer type questions: three questions Nord limit 750 words).	s carrying 11 marks each to be set two to be attempted						
, , ,	Theory of renormalization. The renor	malization group and applications to the theory of						
UNIT-1 20Hrs.	phase transitions.							
UNIT-2 20Hrs	Renormalization of Yang-Mills theories. Since							
UNIT-3 20 H rs	Applications of the renormalization group of quantum chromodynamics.							
UNIT-4 15 Hrs	Perturbation theory anomalies. Applications to particle phenomenology.							
UNIT-5 15 Hrs	Grand unification, The supersymmetric	Standard Model						